Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41487 by behi83417@gmail.com last updated on 08/Aug/18

Commented by maxmathsup by imad last updated on 08/Aug/18

2) we have I = ∫       (dx/((1+x)(√((x+(1/2))^2 +(3/4)))))  changement x+(1/2) =((√3)/2)sh(t) give  I = ∫      (1/((1+((√3)/2)sh(t)−(1/2))((√3)/2)ch(t)))((√3)/2)ch(t)dt  =∫           (dt/((1/2) +((√3)/2)sh(t))) = ∫   ((2dt)/((√3)((e^t −e^(−t) )/2) +(1/2))) = ∫    ((4dt)/((√3)e^t  −(√3)e^(−t)  +1))  =_(e^t  =u)     ∫      (4/((√3)u−(√3)(1/u)+1)) (du/u)  = ∫     ((4du)/((√3)u^2 −(√3) +u))  let decompose  F(u) = (4/((√3)u^2  +u−(√3)))     we have Δ =1−4(−3)=13 ⇒  u_1 =((−1+(√(13)))/(2(√3))) and u_2 =((−1−(√(13)))/(2(√3)))    ⇒F(u) =(4/((√3)(u−u_1 )(u−u_2 )))  =(a/(u−u_1 )) +(b/(u−u_2 ))  a = (4/((√3)(u_1 −u_2 ))) = (4/((√3)((√(13))/(√3)))) = (4/(√3))  b = (4/((√3)(u_2 −u_1 ))) =−(4/(√3)) ⇒ F(u) = (4/((√3)(u−u_1 )))−(4/((√3)(u−u_2 ))) ⇒  ∫  F(u)du = (4/(√3))ln∣u−u_1 ∣ −(4/(√3))ln∣u−u_2 ∣ +c  =(4/(√3))ln∣ e^t −u_1 ∣ −(4/(√3))ln∣e^t −u_2 ∣ +c  but t =argsh(((2x+1)/(√3)))  =ln( ((2x+1)/(√3)) +(√(1+(((2x+1)/(√3)))^2 ))  ⇒  I = (4/(√3))ln∣ ((2x+1)/(√3)) +(√(1+(((2x+1)/2))^2 ))−u_1 ∣ −(4/(√3))ln∣((2x+1)/(√3)) +(√(1+(((2x+1)/(√3)))^2 )) −u_2 ∣ +c

2)wehaveI=dx(1+x)(x+12)2+34changementx+12=32sh(t)giveI=1(1+32sh(t)12)32ch(t)32ch(t)dt=dt12+32sh(t)=2dt3etet2+12=4dt3et3et+1=et=u43u31u+1duu=4du3u23+uletdecomposeF(u)=43u2+u3wehaveΔ=14(3)=13u1=1+1323andu2=11323F(u)=43(uu1)(uu2)=auu1+buu2a=43(u1u2)=43133=43b=43(u2u1)=43F(u)=43(uu1)43(uu2)F(u)du=43lnuu143lnuu2+c=43lnetu143lnetu2+cbutt=argsh(2x+13)=ln(2x+13+1+(2x+13)2I=43ln2x+13+1+(2x+12)2u143ln2x+13+1+(2x+13)2u2+c

Commented by maxmathsup by imad last updated on 08/Aug/18

you are welcome sir

youarewelcomesir

Commented by behi83417@gmail.com last updated on 08/Aug/18

thank you dear proph. abdo.

thankyoudearproph.abdo.

Commented by math khazana by abdo last updated on 10/Aug/18

1) let use the changement (√((1+x^2 )/(1−x^2 )))=t ⇒  ((1+x^2 )/(1−x^2 ))  =t^2  ⇒ 1+x^2 =t^2  −t^2 x^2   ⇒(1+t^2 )x^2 =t^2  −1⇒  x^2  =((t^2  −1)/(t^2  +1))  ⇒2xdx = ((2t(t^2  +1)−2t(t^2  −1))/((t^2  +1)^2 ))  = ((4t)/((t^2  +1)^2 )) dt ⇒   ∫   (1/x)(√((1+x^2 )/(1−x^2 )))dx = ∫   (1/(2x^2 ))(√((1+x^2 )/(1−x^2 ))) (2x)dx  =  (1/2)  ∫   ((t^2  +1)/(t^2  −1)) .t. ((4t)/((t^2  +1)^2 )) dt  = ∫    ((2t^2 )/((t^2  −1)(t^2  +1))) dt  let decompose  F(t) = ((2t^2 )/((t^2 −1)(t^2  +1))) =((2t^2 )/((t−1)(t+1)(t^2  +1)))  F(t) = (a/(t−1)) +(b/(t+1)) +((ct +d)/(t^2  +1))  a =lim_(t→1) (t−1)F(t) = (2/4) =(1/2)  b =lim_(t→−1) (t+1)F(t) = (2/(−4)) =−(1/2) ⇒  F(t)= (1/(2(t−1))) −(1/(2(t+1)))  +((ct +d)/(t^2  +1))  lim_(t→+∞) t F(t) =0 =c ⇒  F(t) =(1/(2(t−1))) −(1/(2(t+1))) +(d/(t^2  +1))  F(0) =−(1/2) −(1/2) +d =0 ⇒d=1 ⇒  F(t)=(1/(2(t−1))) −(1/(2(t+1))) +(1/(t^2  +1))  I  =∫  F(t)dt = (1/2)ln∣((t−1)/(t+1))∣ +arctan(t)+c  =(1/2)ln∣  (((√((1+x^2 )/(1−x^2 )))−1)/((√((1+x^2 )/(1−x^2 )))+1))∣ +arctan((√((1+x^2 )/(1−x^2 )))) +c .

1)letusethechangement1+x21x2=t1+x21x2=t21+x2=t2t2x2(1+t2)x2=t21x2=t21t2+12xdx=2t(t2+1)2t(t21)(t2+1)2=4t(t2+1)2dt1x1+x21x2dx=12x21+x21x2(2x)dx=12t2+1t21.t.4t(t2+1)2dt=2t2(t21)(t2+1)dtletdecomposeF(t)=2t2(t21)(t2+1)=2t2(t1)(t+1)(t2+1)F(t)=at1+bt+1+ct+dt2+1a=limt1(t1)F(t)=24=12b=limt1(t+1)F(t)=24=12F(t)=12(t1)12(t+1)+ct+dt2+1limt+tF(t)=0=cF(t)=12(t1)12(t+1)+dt2+1F(0)=1212+d=0d=1F(t)=12(t1)12(t+1)+1t2+1I=F(t)dt=12lnt1t+1+arctan(t)+c=12ln1+x21x211+x21x2+1+arctan(1+x21x2)+c.

Answered by tanmay.chaudhury50@gmail.com last updated on 08/Aug/18

2)1+x=(1/t)  dx=−(1/t^2 )dt  ∫((−dt)/(t^2 ×(1/t)×(√(1+((1/t)−1)+((1/t)−1)^2 ))))  ∫((−dt)/(t×(√((1/t)+(1/t^2 )−(2/t)+1))))  ∫((−dt)/(t×(√((t+1−2t+t^2 )/t^2 ))))  ∫((−dt)/(√(t^2 −t+1)))  ∫((−dt)/(√(t^2 −2.t.(1/2)+(1/4)+1−(1/4))))  ∫((−dt)/(√((t−(1/2))^2 +(((√3)/2))^2 )))  =−ln{(t−(1/2))+(√((t−(1/2))^2 +(((√3)/2))^2  ))  =−ln{(1+x−(1/2))+(√((1+x−(1/2))^2 +(3/4)))  =−ln{(x+(1/2))+(√(x^2 +x+1))  }+c

2)1+x=1tdx=1t2dtdtt2×1t×1+(1t1)+(1t1)2dtt×1t+1t22t+1dtt×t+12t+t2t2dtt2t+1dtt22.t.12+14+114dt(t12)2+(32)2=ln{(t12)+(t12)2+(32)2=ln{(1+x12)+(1+x12)2+34=ln{(x+12)+x2+x+1}+c

Commented by behi83417@gmail.com last updated on 08/Aug/18

thank you very much dear tanmay sir.

thankyouverymuchdeartanmaysir.

Commented by tanmay.chaudhury50@gmail.com last updated on 08/Aug/18

thank you sir...for keeping our mind busy...

thankyousir...forkeepingourmindbusy...

Commented by behi83417@gmail.com last updated on 08/Aug/18

thanks.I enjoy to see different  questions ,iedas, and solutions.  I alwyes have good sense and time  when being in this forum.  thanks to all my best friends   and colleagues here.  God bless all of you.

thanks.Ienjoytoseedifferentquestions,iedas,andsolutions.Ialwyeshavegoodsenseandtimewhenbeinginthisforum.thankstoallmybestfriendsandcolleagueshere.Godblessallofyou.

Answered by tanmay.chaudhury50@gmail.com last updated on 08/Aug/18

1)∫(1/x).(√((1+x^2 )/(1−x^2 ))) dx  ∫(1/x).(√((1+x^2 )/(1−x^2 )))  dx  t^2 =((1+x^2 )/(1−x^2 ))  1+x^2 =t^2 −t^2 x^2   x^2 (1+t^2 )=t^2 −1  x^2 =((t^2 −1)/(t^2 +1))  2xdx=(((t^2 +1)2t−(t^2 −1)(2t))/((t^2 +1)^2 ))dt  2xdx=((2t^3 +2t−2t^3 +2t)/((t^2 +1)^2 ))dt  xdx=((2tdt)/((t^2 +1)^2 ))  ∫(1/x).(√((1+x^2 )/(1−x^2 ))) dx  ∫(√((1+x^2 )/(1−x^2 ))) .((xdx)/x^2 )  ∫t.((2tdt)/((t^2 +1)^2 )).((t^2 +1)/(t^2 −1))  ∫((2t^2 )/((t^2 +1)(t^2 −1)))dt  ∫((t^2 +1+t^2 −1)/((t^2 +1)(t^2 −1)))dt  ∫(dt/(t^2 −1))+∫(dt/(t^2 +1))  =(1/2)∫(((t+1)−(t−1))/((t+1)(t−1)))dt+∫(dt/(t^2 +1))  =(1/2)[∫(dt/(t−1))−∫(dt/(t+1))]−∫(dt/(t^2 +1))  =(1/2)ln(((t−1)/(t+1)))−tan^(−1) (t)+c  =(1/2)ln((((√((1+x^2 )/(1−x^2 ))) −1)/((√((1+x^2 )/(1−x^2 ))) +1)))−tan^(−1) ((√((1+x^2 )/(1−x^(2 ) ))) )+c  =(1/2)ln((((√(1+x^2 )) −(√(1−x^2 )) )/((√(1+x^2 )) +(√(1−x^2 )) )))−tan^(−1) ((√((1+x^2 )/(1−x^2 ))) )+c

1)1x.1+x21x2dx1x.1+x21x2dxt2=1+x21x21+x2=t2t2x2x2(1+t2)=t21x2=t21t2+12xdx=(t2+1)2t(t21)(2t)(t2+1)2dt2xdx=2t3+2t2t3+2t(t2+1)2dtxdx=2tdt(t2+1)21x.1+x21x2dx1+x21x2.xdxx2t.2tdt(t2+1)2.t2+1t212t2(t2+1)(t21)dtt2+1+t21(t2+1)(t21)dtdtt21+dtt2+1=12(t+1)(t1)(t+1)(t1)dt+dtt2+1=12[dtt1dtt+1]dtt2+1=12ln(t1t+1)tan1(t)+c=12ln(1+x21x211+x21x2+1)tan1(1+x21x2)+c=12ln(1+x21x21+x2+1x2)tan1(1+x21x2)+c

Commented by behi83417@gmail.com last updated on 08/Aug/18

nice work.thanks in advance sir.

nicework.thanksinadvancesir.

Commented by behi83417@gmail.com last updated on 09/Aug/18

=(1/2)ln(((1−(√(1−x^4 )))/x^2 ))−tg^(−1) (((1+x^2 )/(√(1−x^4 ))))+c

=12ln(11x4x2)tg1(1+x21x4)+c

Commented by tanmay.chaudhury50@gmail.com last updated on 10/Aug/18

thank you sir...

thankyousir...

Answered by Ar Brandon last updated on 28/Jul/20

I=∫(dx/((1+x)(√(1+x+x^2 ))))=∫(dx/((x+(1/2)+(1/2))(√((x+(1/2))^2 +(3/4)))))  x+(1/2)=((√3)/2)tanθ ⇒dx=((√3)/2)sec^2 θdθ  ⇒I=∫((((√3)/2)sec^2 θ dθ)/((((√3)/2)tanθ+(1/2))(√((3/4)tan^2 θ+(3/4)))))          =∫((secθ dθ)/(((√3)/2)tanθ+(1/2)))=∫(dθ/(((√3)/2)sinθ+(1/2)cosθ))          =∫(dθ/(sin(π/3)sinθ+cos(π/3)cosθ))=∫(dθ/(cos(θ−(π/3))))          =∫sec(θ−(π/3))dθ=ln∣sec(θ−(π/3))+tan(θ−(π/3))∣+lnA

I=dx(1+x)1+x+x2=dx(x+12+12)(x+12)2+34x+12=32tanθdx=32sec2θdθI=32sec2θdθ(32tanθ+12)34tan2θ+34=secθdθ32tanθ+12=dθ32sinθ+12cosθ=dθsinπ3sinθ+cosπ3cosθ=dθcos(θπ3)=sec(θπ3)dθ=lnsec(θπ3)+tan(θπ3)+lnA

Terms of Service

Privacy Policy

Contact: info@tinkutara.com