Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 41513 by maxmathsup by imad last updated on 08/Aug/18

let  A_n = ∫_0 ^∞   e^(−nx^2 ) cos(x^2 ) dx  and  B_n =∫_0 ^∞   e^(−nx^2 ) sin(x^2 )dx    (n∈ N^★ )  1) calculate  A_n  and  B_n   2) find lim_(n→+∞)   (A_n /B_n )

letAn=0enx2cos(x2)dxandBn=0enx2sin(x2)dx(nN)1)calculateAnandBn2)findlimn+AnBn

Answered by alex041103 last updated on 09/Aug/18

Let A_n =2A_n =∫_(−∞) ^∞ e^(−nx^2 ) cos(x^2 ) dx and  B_n =2B_n =∫_(−∞) ^∞ e^(−nx^2 ) sin(x^2 ) dx  Let Z_n =A_n +iB_n =∫_(−∞) ^∞ e^(−(n−i)x^2 ) dx  Then Z_n =(√(∫_(−∞) ^∞ ∫_(−∞) ^∞ e^(−(n−i)(x^2 +y^2 )) dxdy))  We change to polar coordinates  Z_n =(√(∫_0 ^(2π) ∫_0 ^∞ re^(−(n−i)r^2 ) drdθ))  Z_n ^2 =−((e^(−(n−i)r^2 ) ∣_(r=0) ^(r=∞) )/(2n−2i))∫_0 ^(2π) dθ=  =(π/(n−i))=Z_n ^2 =((π(n+i))/(n^2 +1))  ⇒Z_n =(√(π/(n^2 +1)))(√(n+i))  ⇒A_n =(1/2)(√(π/(n^2 +1)))Re((√(n+i)))       B_n =(1/2)(√(π/(n^2 +1)))Im((√(n+i)))

LetAn=2An=enx2cos(x2)dxandBn=2Bn=enx2sin(x2)dxLetZn=An+iBn=e(ni)x2dxThenZn=e(ni)(x2+y2)dxdyWechangetopolarcoordinatesZn=02π0re(ni)r2drdθZn2=e(ni)r2r=0r=2n2i02πdθ==πni=Zn2=π(n+i)n2+1Zn=πn2+1n+iAn=12πn2+1Re(n+i)Bn=12πn2+1Im(n+i)

Commented by alex041103 last updated on 09/Aug/18

For 2)  (A_n /B_n )=((Re((√(n+i))))/(Im((√(n+i)))))=cot(arg((√(n+i))))=  =cot((1/2)arccot(n))  ⇒lim_(n→∞) cot((1/2)arccot(n))=  =cot((1/2)arccot(+∞))=  =cot((1/2)×0^+ )=cot(0^+ )=+∞  ⇒lim_(n→∞) (A_n /B_n )=+∞

For2)AnBn=Re(n+i)Im(n+i)=cot(arg(n+i))==cot(12arccot(n))limcotn(12arccot(n))==cot(12arccot(+))==cot(12×0+)=cot(0+)=+limnAnBn=+

Answered by math khazana by abdo last updated on 09/Aug/18

we have A_n  +iB_n = ∫_0 ^∞   e^(−nx^2  +ix^2 ) dx  = ∫_0 ^∞    e^(−(n−i)x^2 ) dx ⇒2A_n  +2i B_n =∫_(−∞) ^(+∞)  e^(−(n−i)x^2 ) dx  =_((√(n−i))x=t)   ∫_(−∞) ^(+∞)   e^(−t^2 )  (dt/(√(n−i))) =((√π)/(√(n−i)))  but n−i =(√(n^2 +1)){ (n/(√(n^2  +1))) −(i/(√(n^2  +1)))}=r e^(iθ)  ⇒  r =(√(n^2  +1))    and  tanθ =−(1/n) ⇒θ=−arctan((1/n))⇒  (√(n−i))=(n^2  +1)^(1/4)  e^((iθ)/2)    =(n^2 +1)^(1/4)  e^(−i((arctan((1/n)))/2))   =^4 (√(n^2  +1)){ cos((1/2) arctan((1/n)) −i sin((1/2)arctan((1/n)))  =^4 (√(n^2  +1)){ cos((π/4) −((arctan(n))/2))−isin((π/4)−((arctan(n))/2))⇒  A_n =^4 (√(n^2  +1))cos(−(π/4) +((arctan(n))/2)) and  B_n =^4 (√(n^2  +1))sin(−(π/4) +((arctan(n))/2)) .

wehaveAn+iBn=0enx2+ix2dx=0e(ni)x2dx2An+2iBn=+e(ni)x2dx=nix=t+et2dtni=πnibutni=n2+1{nn2+1in2+1}=reiθr=n2+1andtanθ=1nθ=arctan(1n)ni=(n2+1)14eiθ2=(n2+1)14eiarctan(1n)2=4n2+1{cos(12arctan(1n)isin(12arctan(1n))=4n2+1{cos(π4arctan(n)2)isin(π4arctan(n)2)An=4n2+1cos(π4+arctan(n)2)andBn=4n2+1sin(π4+arctan(n)2).

Commented by math khazana by abdo last updated on 10/Aug/18

error at the final lines  A_n = ((√π)/2) ^4 (√(n^2  +1))cos(((arctan(n))/2)−(π/4)) and  B_n =((√π)/2)^4 (√(n^2  +1))sin(((arctan(n))/2) −(π/4)) .

erroratthefinallinesAn=π24n2+1cos(arctan(n)2π4)andBn=π24n2+1sin(arctan(n)2π4).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com