Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41515 by maxmathsup by imad last updated on 08/Aug/18

let  f_n (x) =((sin(2(n+1)x))/(sinx)) if  x∈]0,(π/2)] and f_n (0)=2(n+1)  let  u_n = ∫_0 ^(π/2)  f_n (x)dx  1) prove that  ∀n fromN  u_(n+1) −u_n =2(((−1)^(n+1) )/(2n+3))  2)find lim_(n→+∞)  u_n

letfn(x)=sin(2(n+1)x)sinxifx]0,π2]andfn(0)=2(n+1)letun=0π2fn(x)dx1)provethatnfromNun+1un=2(1)n+12n+32)findlimn+un

Commented by maxmathsup by imad last updated on 12/Aug/18

1) u_(n+1) −u_n =∫_0 ^(π/2)    ((sin(2(n+2)x)−sin(2(n+1)x))/(sinx))dx but  sinp−sinq =cos((π/2)−p)  +cos((π/2)+q) =2 cos(((π−p+q)/2))cos(((−p−q)/2))  = 2cos((π/2) −((p−q)/2))cos(((p+q)/2))=2sin(((p−q)/2))cos(((p+q)/2)) ⇒  sin(2(n+2)x)−sin(2(n+1)x)=2sin(x)cos((((4n+6)x)/2))⇒  u_(n+1) −u_n =2∫_0 ^(π/2)   sin(x)cos((2n+3)x) .(1/(sinx)) dx  = 2∫_0 ^(π/2)  cos{(2n+3)x}dx =2[(1/(2n +3)) sin{(2n+3)x}]_0 ^(π/2)   =(2/(2n+3))sin{(2n+3)(π/2)} =(2/(2n+3)) sin(nπ +2π−(π/2))  =−(2/(2n +3)) sin((π/2) −nπ) =−(2/(2n+3))cos(nπ) =2((−(−1)^n )/(2n+3)) =2(((−1)^(n+1) )/(2n+3)) ⇒  u_(n+1)  −u_n =2(((−1)^(n+1) )/(2n+3))

1)un+1un=0π2sin(2(n+2)x)sin(2(n+1)x)sinxdxbutsinpsinq=cos(π2p)+cos(π2+q)=2cos(πp+q2)cos(pq2)=2cos(π2pq2)cos(p+q2)=2sin(pq2)cos(p+q2)sin(2(n+2)x)sin(2(n+1)x)=2sin(x)cos((4n+6)x2)un+1un=20π2sin(x)cos((2n+3)x).1sinxdx=20π2cos{(2n+3)x}dx=2[12n+3sin{(2n+3)x}]0π2=22n+3sin{(2n+3)π2}=22n+3sin(nπ+2ππ2)=22n+3sin(π2nπ)=22n+3cos(nπ)=2(1)n2n+3=2(1)n+12n+3un+1un=2(1)n+12n+3

Commented by maxmathsup by imad last updated on 12/Aug/18

2) we have Σ_(k=0) ^(n−1) (u_(k+1)  −u_k ) =2 Σ_(k=0) ^(n−1)   (((−1)^(k+1) )/(2k+3)) ⇒  u_n −u_0 = 2 Σ_(k=0) ^(n−1)   (((−1)^(k+1) )/(2k+3))   (   j=k+1)  =2 Σ_(j=1) ^n    (((−1)^j )/(2j+1))  ⇒ lim_(n→+∞)  u_n =u_0   +2 Σ_(j=1) ^∞    (((−1)^j )/(2j+1))  = u_0   + 2Σ_(j=0) ^∞     (((−1)^j )/(2j+1)) −2 =u_0  −2 + 2(π/4) =(π/2) +u_0  −2  but  u_0 =∫_0 ^(π/2)  2 dx =π ⇒lim_(n→+∞)    u_n =((3π)/2) −2 .

2)wehavek=0n1(uk+1uk)=2k=0n1(1)k+12k+3unu0=2k=0n1(1)k+12k+3(j=k+1)=2j=1n(1)j2j+1limn+un=u0+2j=1(1)j2j+1=u0+2j=0(1)j2j+12=u02+2π4=π2+u02butu0=0π22dx=πlimn+un=3π22.

Commented by math khazana by abdo last updated on 13/Aug/18

u_0 = ∫_0 ^(π/2)    ((sin(2x))/(sinx)) dx =2 ∫_0 ^(π/2)  cosx dx=2 ⇒  lim_(n→+∞)    u_n =2−2 +((2π)/4) ⇒  lim_(n→+∞) u_n =(π/2) .

u0=0π2sin(2x)sinxdx=20π2cosxdx=2limn+un=22+2π4limn+un=π2.

Answered by alex041103 last updated on 10/Aug/18

We know that:  sin(2(n+2)x)=sin(2(n+1)x+2x)=  =cos(2x)sin(2(n+1)x)+sin(2x)cos(2(n+1)x)  cos(2x)=1−2sin^2 x  sin(2x)=2sin(x)cos(x)  ⇒u_(n+1) =∫_0 ^(π/2) (((1−2sin^2 x)sin(2(n+1)x))/(sin(x)))dx+∫_0 ^(π/2) ((2sin(x)cos(x)cos(2(n+1)x))/(sin(x)))dx  =u_n +2∫_0 ^(π/2) (cos(x)cos(2(n+1)x)−sin(x)sin(2(n+1)x))dx=  ⇒u_(n+1) −u_n =2∫cos((2n+3)x)dx=  =(2/(2n+3))∫cos((2n+3)x)d((2n+3)x)=  =(2/(2n+1))[sin((2n+3)(π/2))−sin(0)]  sin((2n+3)(π/2))=sin((n+1)π + (π/2))  sin(t+π)=cos(π)sin(t)+sin(π)cos(t)=  =−sin(t)  ⇒sin((n+1)π + (π/2))=(−1)^(n+1) sin(π/2)=(−1)^(n+1)   ⇒u_(n+1) −u_n =((2(−1)^(n+1) )/(2n+3))  ⇒Σ_(k=0) ^n u_(k+1) −u_k =u_(n+1) −u_0 =2Σ_(k=0) ^n (((−1)^(k+1) )/(2k+3))  u_0 =∫_0 ^(π/2) ((sin(2x))/(sin(x)))dx=2∫_0 ^(π/2) cos(x)dx=2  ⇒u_n =2Σ_(k=−1) ^(n−1) (((−1)^(k+1) )/(2k+3))=2Σ_(k=0−1) ^(n−1) (((−1)^(k+1) )/(2(k+1)+1))  ⇒u_n =Σ_(k=0) ^n ((2(−1)^k )/(2k+1))  lim_(n→∞) u_n =2Σ_(k=0) ^∞ (((−1)^k )/(2k+1))=2(π/4)=(π/2)  Ans. u_∞ =π/2

Weknowthat:sin(2(n+2)x)=sin(2(n+1)x+2x)==cos(2x)sin(2(n+1)x)+sin(2x)cos(2(n+1)x)cos(2x)=12sin2xsin(2x)=2sin(x)cos(x)un+1=0π/2(12sin2x)sin(2(n+1)x)sin(x)dx+0π/22sin(x)cos(x)cos(2(n+1)x)sin(x)dx=un+20π/2(cos(x)cos(2(n+1)x)sin(x)sin(2(n+1)x))dx=un+1un=2cos((2n+3)x)dx==22n+3cos((2n+3)x)d((2n+3)x)==22n+1[sin((2n+3)π2)sin(0)]sin((2n+3)π2)=sin((n+1)π+π2)sin(t+π)=cos(π)sin(t)+sin(π)cos(t)==sin(t)sin((n+1)π+π2)=(1)n+1sin(π/2)=(1)n+1un+1un=2(1)n+12n+3nk=0uk+1uk=un+1u0=2nk=0(1)k+12k+3u0=0π/2sin(2x)sin(x)dx=20π/2cos(x)dx=2un=2n1k=1(1)k+12k+3=2n1k=01(1)k+12(k+1)+1un=nk=02(1)k2k+1Double subscripts: use braces to clarifyAns.u=π/2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com