Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41516 by maxmathsup by imad last updated on 08/Aug/18

calculate ∫_0 ^1    ((ln(1+x))/((1+x)^4 )) dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{4}} }\:{dx} \\ $$

Commented by turbo msup by abdo last updated on 12/Aug/18

let A =∫_0 ^1   ((ln(1+x))/((1+x)^4 ))dx changement  1+x =t give  A = ∫_1 ^2   ((ln(t))/t^4 )dt  and by parts  u^′  =t^(−4)   and v=ln(t) ⇒  A =[−(1/3)t^(−3) ln(t)]_1 ^2 +∫_1 ^2 (1/3) t^(−3)  (dt/t)  =−(1/3)((ln(2))/8)  +(1/3) ∫_1 ^2   t^(−4)  dt  =−((ln(2))/(24)) +(1/3)[−(1/3)t^(−3) ]_1 ^2   =−((ln(2))/(24)) −(1/9)( (1/8) −1)  =−((ln(2))/(24)) −(1/9)(((−7)/8))  =(7/(72)) −((ln(2))/(24))

$${let}\:{A}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{4}} }{dx}\:{changement} \\ $$$$\mathrm{1}+{x}\:={t}\:{give} \\ $$$${A}\:=\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\frac{{ln}\left({t}\right)}{{t}^{\mathrm{4}} }{dt}\:\:{and}\:{by}\:{parts} \\ $$$${u}^{'} \:={t}^{−\mathrm{4}} \:\:{and}\:{v}={ln}\left({t}\right)\:\Rightarrow \\ $$$${A}\:=\left[−\frac{\mathrm{1}}{\mathrm{3}}{t}^{−\mathrm{3}} {ln}\left({t}\right)\right]_{\mathrm{1}} ^{\mathrm{2}} +\int_{\mathrm{1}} ^{\mathrm{2}} \frac{\mathrm{1}}{\mathrm{3}}\:{t}^{−\mathrm{3}} \:\frac{{dt}}{{t}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{8}}\:\:+\frac{\mathrm{1}}{\mathrm{3}}\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:{t}^{−\mathrm{4}} \:{dt} \\ $$$$=−\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{24}}\:+\frac{\mathrm{1}}{\mathrm{3}}\left[−\frac{\mathrm{1}}{\mathrm{3}}{t}^{−\mathrm{3}} \right]_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$=−\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{24}}\:−\frac{\mathrm{1}}{\mathrm{9}}\left(\:\frac{\mathrm{1}}{\mathrm{8}}\:−\mathrm{1}\right) \\ $$$$=−\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{24}}\:−\frac{\mathrm{1}}{\mathrm{9}}\left(\frac{−\mathrm{7}}{\mathrm{8}}\right) \\ $$$$=\frac{\mathrm{7}}{\mathrm{72}}\:−\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{24}} \\ $$

Answered by alex041103 last updated on 09/Aug/18

∫_0 ^1    ((ln(1+x))/((1+x)^4 )) dx=∫_0 ^1    ((ln(1+x))/((1+x)^4 )) d(x+1)=  =∫_1 ^2    ((ln(x))/x^4 ) dx=I  let x=e^u ⇒dx=e^u du  ⇒I=∫_0 ^( ln(2)) (u/e^(4u) )e^u du=∫_0 ^(ln(2)) ue^(−3u) du=  =−(1/3)∫_0 ^(ln(2)) ud(e^(−3u) )  We integrate by parts:  −3I=ue^(−3u) ]_0 ^(ln(2)) −∫_0 ^(ln(2)) e^(−3u) du=  =((ln(2))/8)−(7/(24))  ⇒I=(7/(72))−((ln(2))/(24))≈0.0683411

$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{4}} }\:{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{4}} }\:{d}\left({x}+\mathrm{1}\right)= \\ $$$$=\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\frac{{ln}\left({x}\right)}{{x}^{\mathrm{4}} }\:{dx}={I} \\ $$$${let}\:{x}={e}^{{u}} \Rightarrow{dx}={e}^{{u}} {du} \\ $$$$\Rightarrow{I}=\int_{\mathrm{0}} ^{\:{ln}\left(\mathrm{2}\right)} \frac{{u}}{{e}^{\mathrm{4}{u}} }{e}^{{u}} {du}=\int_{\mathrm{0}} ^{{ln}\left(\mathrm{2}\right)} {ue}^{−\mathrm{3}{u}} {du}= \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{{ln}\left(\mathrm{2}\right)} {ud}\left({e}^{−\mathrm{3}{u}} \right) \\ $$$${We}\:{integrate}\:{by}\:{parts}: \\ $$$$\left.−\mathrm{3}{I}={ue}^{−\mathrm{3}{u}} \right]_{\mathrm{0}} ^{{ln}\left(\mathrm{2}\right)} −\int_{\mathrm{0}} ^{{ln}\left(\mathrm{2}\right)} {e}^{−\mathrm{3}{u}} {du}= \\ $$$$=\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{8}}−\frac{\mathrm{7}}{\mathrm{24}} \\ $$$$\Rightarrow{I}=\frac{\mathrm{7}}{\mathrm{72}}−\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{24}}\approx\mathrm{0}.\mathrm{0683411} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com