All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 41516 by maxmathsup by imad last updated on 08/Aug/18
calculate∫01ln(1+x)(1+x)4dx
Commented by turbo msup by abdo last updated on 12/Aug/18
letA=∫01ln(1+x)(1+x)4dxchangement1+x=tgiveA=∫12ln(t)t4dtandbypartsu′=t−4andv=ln(t)⇒A=[−13t−3ln(t)]12+∫1213t−3dtt=−13ln(2)8+13∫12t−4dt=−ln(2)24+13[−13t−3]12=−ln(2)24−19(18−1)=−ln(2)24−19(−78)=772−ln(2)24
Answered by alex041103 last updated on 09/Aug/18
∫01ln(1+x)(1+x)4dx=∫01ln(1+x)(1+x)4d(x+1)==∫12ln(x)x4dx=Iletx=eu⇒dx=eudu⇒I=∫0ln(2)ue4ueudu=∫0ln(2)ue−3udu==−13∫0ln(2)ud(e−3u)Weintegratebyparts:−3I=ue−3u]0ln(2)−∫0ln(2)e−3udu==ln(2)8−724⇒I=772−ln(2)24≈0.0683411
Terms of Service
Privacy Policy
Contact: info@tinkutara.com