Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 41517 by maxmathsup by imad last updated on 08/Aug/18

let  S_n = 1 +(1/((^3 (√2)))) + (1/((^3 (√3)))) + ....+(1/((^3 (√n))))  calculate lim _(n→+∞)  S_n

$${let}\:\:{S}_{{n}} =\:\mathrm{1}\:+\frac{\mathrm{1}}{\left(^{\mathrm{3}} \sqrt{\mathrm{2}}\right)}\:+\:\frac{\mathrm{1}}{\left(^{\mathrm{3}} \sqrt{\mathrm{3}}\right)}\:+\:....+\frac{\mathrm{1}}{\left(^{\mathrm{3}} \sqrt{{n}}\right)} \\ $$$${calculate}\:{lim}\:_{{n}\rightarrow+\infty} \:{S}_{{n}} \\ $$

Commented by maxmathsup by imad last updated on 10/Aug/18

we have S_n =Σ_(k=1) ^n    (1/k^(1/3) )   the function  t→(1/x^(1/3) ) is decreasing so    ∫_k ^(k+1)   (dt/t^(1/3) ) ≤   (1/k^(1/3) ) ≤  ∫_(k−1) ^k   (dt/t^(1/3) ) ⇒ Σ_(k=2) ^n   ∫_k ^(k+1)  (dt/t^(1/3) ) ≤ Σ_(k=2) ^n   (1/k^(1/3) ) ≤ Σ_(k=2) ^n  ∫_(k−1) ^k   (dt/t^(1/3) )  ⇒  ∫_2 ^(n+1)   t^(−(1/3))  dt ≤  S_n −1 ≤  ∫_1 ^n    t^(−(1/3))  dt ⇒  [  (3/2) t^(2/3) ]_2 ^(n+1)  ≤ S_n −1 ≤ [ (3/2) t^(2/3) ]_1 ^n  ⇒(3/2){ (n+1)^(2/3)  −2^(2/3) }≤ S_n −1  ≤ (3/2){  n^(2/3)  −1}⇒ S_n  ≥ 1 +(3/2)(n+1)^(2/3)  −(3/2) 2^(2/3)  →+∞(n→+∞) ⇒  lim_(n→+∞)   S_n =+∞ .

$${we}\:{have}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{\mathrm{1}}{{k}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:\:\:{the}\:{function}\:\:{t}\rightarrow\frac{\mathrm{1}}{{x}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:{is}\:{decreasing}\:{so}\: \\ $$$$\:\int_{{k}} ^{{k}+\mathrm{1}} \:\:\frac{{dt}}{{t}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:\leqslant\:\:\:\frac{\mathrm{1}}{{k}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:\leqslant\:\:\int_{{k}−\mathrm{1}} ^{{k}} \:\:\frac{{dt}}{{t}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:\Rightarrow\:\sum_{{k}=\mathrm{2}} ^{{n}} \:\:\int_{{k}} ^{{k}+\mathrm{1}} \:\frac{{dt}}{{t}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:\leqslant\:\sum_{{k}=\mathrm{2}} ^{{n}} \:\:\frac{\mathrm{1}}{{k}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:\leqslant\:\sum_{{k}=\mathrm{2}} ^{{n}} \:\int_{{k}−\mathrm{1}} ^{{k}} \:\:\frac{{dt}}{{t}^{\frac{\mathrm{1}}{\mathrm{3}}} } \\ $$$$\Rightarrow\:\:\int_{\mathrm{2}} ^{{n}+\mathrm{1}} \:\:{t}^{−\frac{\mathrm{1}}{\mathrm{3}}} \:{dt}\:\leqslant\:\:{S}_{{n}} −\mathrm{1}\:\leqslant\:\:\int_{\mathrm{1}} ^{{n}} \:\:\:{t}^{−\frac{\mathrm{1}}{\mathrm{3}}} \:{dt}\:\Rightarrow \\ $$$$\left[\:\:\frac{\mathrm{3}}{\mathrm{2}}\:{t}^{\frac{\mathrm{2}}{\mathrm{3}}} \right]_{\mathrm{2}} ^{{n}+\mathrm{1}} \:\leqslant\:{S}_{{n}} −\mathrm{1}\:\leqslant\:\left[\:\frac{\mathrm{3}}{\mathrm{2}}\:{t}^{\frac{\mathrm{2}}{\mathrm{3}}} \right]_{\mathrm{1}} ^{{n}} \:\Rightarrow\frac{\mathrm{3}}{\mathrm{2}}\left\{\:\left({n}+\mathrm{1}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \:−\mathrm{2}^{\frac{\mathrm{2}}{\mathrm{3}}} \right\}\leqslant\:{S}_{{n}} −\mathrm{1} \\ $$$$\leqslant\:\frac{\mathrm{3}}{\mathrm{2}}\left\{\:\:{n}^{\frac{\mathrm{2}}{\mathrm{3}}} \:−\mathrm{1}\right\}\Rightarrow\:{S}_{{n}} \:\geqslant\:\mathrm{1}\:+\frac{\mathrm{3}}{\mathrm{2}}\left({n}+\mathrm{1}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \:−\frac{\mathrm{3}}{\mathrm{2}}\:\mathrm{2}^{\frac{\mathrm{2}}{\mathrm{3}}} \:\rightarrow+\infty\left({n}\rightarrow+\infty\right)\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:\:{S}_{{n}} =+\infty\:. \\ $$

Answered by alex041103 last updated on 09/Aug/18

lim_(n→∞)  S_n =S_∞ =Σ_(k=1) ^∞ (1/k^(1/3) )  We know that k^(1/3) ≤k for kεN  ⇒(1/k^(1/3) )≥(1/k)  ⇒S_∞ >Σ_(k=1) ^∞ (1/k)=s_∞   As we know s_∞  doesn′t converge.  ⇒S_∞  doesn′t converge.

$$\underset{{n}\rightarrow\infty} {{lim}}\:{S}_{{n}} ={S}_{\infty} =\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{1}/\mathrm{3}} } \\ $$$${We}\:{know}\:{that}\:{k}^{\mathrm{1}/\mathrm{3}} \leqslant{k}\:{for}\:{k}\epsilon\mathbb{N} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{k}^{\mathrm{1}/\mathrm{3}} }\geqslant\frac{\mathrm{1}}{{k}} \\ $$$$\Rightarrow{S}_{\infty} >\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}}={s}_{\infty} \\ $$$${As}\:{we}\:{know}\:{s}_{\infty} \:{doesn}'{t}\:{converge}. \\ $$$$\Rightarrow{S}_{\infty} \:{doesn}'{t}\:{converge}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com