Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 41519 by maxmathsup by imad last updated on 08/Aug/18

let z=(√(2−(√3)))  −i(√(2+(√3)))  calculate ∣z^n ∣  and arg(z^n )

$${let}\:{z}=\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}\:\:−{i}\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}} \\ $$$${calculate}\:\mid{z}^{{n}} \mid\:\:{and}\:{arg}\left({z}^{{n}} \right) \\ $$

Answered by alex041103 last updated on 09/Aug/18

We know that ∣z^n ∣=∣z∣^n .  ⇒∣z^n ∣=∣z∣^n =(Re(z)^2 +Im(z)^2 )^(n/2) =  =(2−(√3)+2+(√3))^(n/2) =2^n   Also arg(z^n )≡n arg(z) (mod 2π).  ⇒arg(z^n )≡n arg(z) (mod 2π)  ≡n (2π−arctan(((√(2+(√3)))/(√(2−(√3))))))  ((√(2+(√3)))/(√(2−(√3)))) = ((√(2+(√3)))/(√(2−(√3)))) ((√(2+(√3)))/(√(2+(√3)))) =((2+(√3))/(√(4−3)))=2+(√3)  ⇒∣z^n ∣=2^n  and arg(z^n )=n(2π−arctan(2+(√3))) (mod 2π)

$${We}\:{know}\:{that}\:\mid{z}^{{n}} \mid=\mid{z}\mid^{{n}} . \\ $$$$\Rightarrow\mid{z}^{{n}} \mid=\mid{z}\mid^{{n}} =\left({Re}\left({z}\right)^{\mathrm{2}} +{Im}\left({z}\right)^{\mathrm{2}} \right)^{{n}/\mathrm{2}} = \\ $$$$=\left(\mathrm{2}−\sqrt{\mathrm{3}}+\mathrm{2}+\sqrt{\mathrm{3}}\right)^{{n}/\mathrm{2}} =\mathrm{2}^{{n}} \\ $$$${Also}\:{arg}\left({z}^{{n}} \right)\equiv{n}\:{arg}\left({z}\right)\:\left({mod}\:\mathrm{2}\pi\right). \\ $$$$\Rightarrow{arg}\left({z}^{{n}} \right)\equiv{n}\:{arg}\left({z}\right)\:\left({mod}\:\mathrm{2}\pi\right) \\ $$$$\equiv{n}\:\left(\mathrm{2}\pi−{arctan}\left(\frac{\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}}{\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}}\right)\right) \\ $$$$\frac{\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}}{\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}}\:=\:\frac{\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}}{\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}}\:\frac{\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}}{\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}}\:=\frac{\mathrm{2}+\sqrt{\mathrm{3}}}{\sqrt{\mathrm{4}−\mathrm{3}}}=\mathrm{2}+\sqrt{\mathrm{3}} \\ $$$$\Rightarrow\mid{z}^{{n}} \mid=\mathrm{2}^{{n}} \:{and}\:{arg}\left({z}^{{n}} \right)={n}\left(\mathrm{2}\pi−{arctan}\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)\right)\:\left({mod}\:\mathrm{2}\pi\right) \\ $$

Answered by maxmathsup by imad last updated on 09/Aug/18

we have cos^2 ((π/(12)))=((1+cos((π/6)))/2) =((1+((√3)/2))/2) =((2+(√3))/4) ⇒cos((π/(12)))=((√(2+(√3)))/2) also  we have sin^2 ((π/(12)))=((1−cos((π/6)))/2) .((1−((√3)/2))/2) =((2−(√3))/4) ⇒sin((π/(12)))=((√(2−(√3)))/2) ⇒  z =2sin((π/(12)))−2i cos((π/(12))) =2 cos((π/2)−(π/(12)))−2i sin((π/2)−(π/(12)))  =2 cos(((5π)/(12)))−2isin(((5π)/(12))) = 2 e^(−i((5π)/(12)))   ⇒ z^n  =2^n  e^(−n((i5π)/(12)))  ⇒  ∣z^n ∣ =2^n   and arg(z^n )≡−((5nπ)/(12))[2π] .

$${we}\:{have}\:{cos}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{12}}\right)=\frac{\mathrm{1}+{cos}\left(\frac{\pi}{\mathrm{6}}\right)}{\mathrm{2}}\:=\frac{\mathrm{1}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}{\mathrm{2}}\:=\frac{\mathrm{2}+\sqrt{\mathrm{3}}}{\mathrm{4}}\:\Rightarrow{cos}\left(\frac{\pi}{\mathrm{12}}\right)=\frac{\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}}{\mathrm{2}}\:{also} \\ $$$${we}\:{have}\:{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{12}}\right)=\frac{\mathrm{1}−{cos}\left(\frac{\pi}{\mathrm{6}}\right)}{\mathrm{2}}\:.\frac{\mathrm{1}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}{\mathrm{2}}\:=\frac{\mathrm{2}−\sqrt{\mathrm{3}}}{\mathrm{4}}\:\Rightarrow{sin}\left(\frac{\pi}{\mathrm{12}}\right)=\frac{\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}}{\mathrm{2}}\:\Rightarrow \\ $$$${z}\:=\mathrm{2}{sin}\left(\frac{\pi}{\mathrm{12}}\right)−\mathrm{2}{i}\:{cos}\left(\frac{\pi}{\mathrm{12}}\right)\:=\mathrm{2}\:{cos}\left(\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{12}}\right)−\mathrm{2}{i}\:{sin}\left(\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{12}}\right) \\ $$$$=\mathrm{2}\:{cos}\left(\frac{\mathrm{5}\pi}{\mathrm{12}}\right)−\mathrm{2}{isin}\left(\frac{\mathrm{5}\pi}{\mathrm{12}}\right)\:=\:\mathrm{2}\:{e}^{−{i}\frac{\mathrm{5}\pi}{\mathrm{12}}} \:\:\Rightarrow\:{z}^{{n}} \:=\mathrm{2}^{{n}} \:{e}^{−{n}\frac{{i}\mathrm{5}\pi}{\mathrm{12}}} \:\Rightarrow \\ $$$$\mid{z}^{{n}} \mid\:=\mathrm{2}^{{n}} \:\:{and}\:{arg}\left({z}^{{n}} \right)\equiv−\frac{\mathrm{5}{n}\pi}{\mathrm{12}}\left[\mathrm{2}\pi\right]\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com