Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 4156 by Yozzii last updated on 30/Dec/15

Let I(n)=∫_0 ^n {(√(a+coshx))−(√(a+sinhx))}dx  with 0<a<1 and define I=lim_(n→∞) I(n).  Does I exist?

$${Let}\:{I}\left({n}\right)=\int_{\mathrm{0}} ^{{n}} \left\{\sqrt{{a}+{coshx}}−\sqrt{{a}+{sinhx}}\right\}{dx} \\ $$ $${with}\:\mathrm{0}<{a}<\mathrm{1}\:{and}\:{define}\:{I}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}{I}\left({n}\right). \\ $$ $${Does}\:{I}\:{exist}?\: \\ $$

Commented by123456 last updated on 30/Dec/15

lim_(x→∞)  coshx−sinhx=?  lim_(x→∞) (√(a+cosh x))−(√(a+sinh x))=?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{cosh}{x}−\mathrm{sinh}{x}=? \\ $$ $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt{{a}+\mathrm{cosh}\:{x}}−\sqrt{{a}+\mathrm{sinh}\:{x}}=? \\ $$

Commented byYozzii last updated on 01/Jan/16

Suppose (√(a+coshx))−(√(a+sinhx))=0  (√((a+coshx)/(a+sinhx)))=1  coshx=sinhx  ((e^x +e^(−x) )/2)=((e^x −e^(−x) )/2)  e^(−x) =−e^(−x)   2e^(−x) =0 (false)  no real root exists.

$${Suppose}\:\sqrt{{a}+{coshx}}−\sqrt{{a}+{sinhx}}=\mathrm{0} \\ $$ $$\sqrt{\frac{{a}+{coshx}}{{a}+{sinhx}}}=\mathrm{1} \\ $$ $${coshx}={sinhx} \\ $$ $$\frac{{e}^{{x}} +{e}^{−{x}} }{\mathrm{2}}=\frac{{e}^{{x}} −{e}^{−{x}} }{\mathrm{2}} \\ $$ $${e}^{−{x}} =−{e}^{−{x}} \\ $$ $$\mathrm{2}{e}^{−{x}} =\mathrm{0}\:\left({false}\right) \\ $$ $${no}\:{real}\:{root}\:{exists}. \\ $$ $$ \\ $$

Commented byFilup last updated on 31/Dec/15

cosh x=((e^x +e^(−x) )/2)  sinh x=((e^x −e^(−x) )/2)    cosh(x)−sinh(x)=((e^x +e^(−x) −e^x +e^(−x) )/2)  =e^(−x)   lim_(x→∞)  cosh(x)−sinh(x) = (1/e^∞ )  =0

$$\mathrm{cosh}\:{x}=\frac{{e}^{{x}} +{e}^{−{x}} }{\mathrm{2}} \\ $$ $$\mathrm{sinh}\:{x}=\frac{{e}^{{x}} −{e}^{−{x}} }{\mathrm{2}} \\ $$ $$ \\ $$ $$\mathrm{cosh}\left({x}\right)−\mathrm{sinh}\left({x}\right)=\frac{{e}^{{x}} +{e}^{−{x}} −{e}^{{x}} +{e}^{−{x}} }{\mathrm{2}} \\ $$ $$={e}^{−{x}} \\ $$ $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{cosh}\left({x}\right)−\mathrm{sinh}\left({x}\right)\:=\:\frac{\mathrm{1}}{{e}^{\infty} } \\ $$ $$=\mathrm{0} \\ $$ $$ \\ $$

Commented byFilup last updated on 31/Dec/15

Commented byFilup last updated on 31/Dec/15

It seems that  lim_(x→∞)  (√(a+cosh(x)))−(√(a+sinh(x)))=0

$$\mathrm{It}\:\mathrm{seems}\:\mathrm{that} \\ $$ $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{{a}+\mathrm{cosh}\left({x}\right)}−\sqrt{{a}+\mathrm{sinh}\left({x}\right)}=\mathrm{0} \\ $$

Commented byYozzii last updated on 31/Dec/15

I noticed that. So, out of curiosity  I wondered if the area bouned between  the axes for x>0,y>0 and the  curve is finite as n→∞.

$${I}\:{noticed}\:{that}.\:{So},\:{out}\:{of}\:{curiosity} \\ $$ $${I}\:{wondered}\:{if}\:{the}\:{area}\:{bouned}\:{between} \\ $$ $${the}\:{axes}\:{for}\:{x}>\mathrm{0},{y}>\mathrm{0}\:{and}\:{the} \\ $$ $${curve}\:{is}\:{finite}\:{as}\:{n}\rightarrow\infty. \\ $$

Commented byYozzii last updated on 31/Dec/15

Let             u=a+coshx             v=a+sinhx  g=(√u)−(√v)=((u−v)/((√u)+(√v)))=((coshx−sinhx)/((√u)+(√v)))  g=((0.5(e^x +e^(−x) −(e^x −e^(−x) )))/((√u)+(√v)))=(e^(−x) /((√u)+(√v)))  g=(1/(e^x ((√(a+0.5(e^x +e^(−x) )))+(√(a+0.5(e^x −e^(−x) ))))))  ∴ lim_(x→∞) g=(1/(∞((√(a+0.5(∞+0)))+(√(a+0.5(∞−0))))))=0.

$${Let} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:{u}={a}+{coshx} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:{v}={a}+{sinhx} \\ $$ $${g}=\sqrt{{u}}−\sqrt{{v}}=\frac{{u}−{v}}{\sqrt{{u}}+\sqrt{{v}}}=\frac{{coshx}−{sinhx}}{\sqrt{{u}}+\sqrt{{v}}} \\ $$ $${g}=\frac{\mathrm{0}.\mathrm{5}\left({e}^{{x}} +{e}^{−{x}} −\left({e}^{{x}} −{e}^{−{x}} \right)\right)}{\sqrt{{u}}+\sqrt{{v}}}=\frac{{e}^{−{x}} }{\sqrt{{u}}+\sqrt{{v}}} \\ $$ $${g}=\frac{\mathrm{1}}{{e}^{{x}} \left(\sqrt{{a}+\mathrm{0}.\mathrm{5}\left({e}^{{x}} +{e}^{−{x}} \right)}+\sqrt{{a}+\mathrm{0}.\mathrm{5}\left({e}^{{x}} −{e}^{−{x}} \right)}\right)} \\ $$ $$\therefore\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}{g}=\frac{\mathrm{1}}{\infty\left(\sqrt{{a}+\mathrm{0}.\mathrm{5}\left(\infty+\mathrm{0}\right)}+\sqrt{{a}+\mathrm{0}.\mathrm{5}\left(\infty−\mathrm{0}\right)}\right)}=\mathrm{0}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com