Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41561 by Tawa1 last updated on 09/Aug/18

∫ (dx/(3sin(x) + 4cos(x)))

$$\int\:\frac{\mathrm{dx}}{\mathrm{3sin}\left(\mathrm{x}\right)\:+\:\mathrm{4cos}\left(\mathrm{x}\right)} \\ $$

Commented by math khazana by abdo last updated on 09/Aug/18

changement tan((x/2))=t give  I  = ∫      (1/(3((2t)/(1+t^2 )) +4((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  = 2 ∫      (dt/(6t +4−4t^2 )) = ∫    (dt/(−2t^2  +3t +2))  =−∫    (dt/(2t^2 −3t−2)) let decompose  F(t)= (1/(2t^2 −3t −2))  Δ =9+16 =25 ⇒t_1 =((3+5)/4) =2 and t_2 =((3−5)/4) =−(1/2)  F(t) =(1/(2(t−2)(t+(1/2)))) =(a/(t−2)) +(b/(t+(1/2)))  a = (1/(2(2+(1/2)))) = (1/5)  b = (1/(2((1/2)−2))) =− (1/3) ⇒F(t)=(1/(5(t−2))) −(1/(3(t+(1/2))))  I =−∫ F(t)dt = ∫   (1/(3(t+(1/2))))dt −(1/5) ∫  (dt/(t−2)) +c  =(1/3)ln∣t+(1/2)∣ −(1/5)ln∣t−2∣ +c  =(1/3)ln∣tan((x/2))+(1/2)∣−(1/5)ln∣tan((x/2))−2∣ +c .

$${changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\ $$$${I}\:\:=\:\int\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{3}\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\:+\mathrm{4}\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\:\mathrm{2}\:\int\:\:\:\:\:\:\frac{{dt}}{\mathrm{6}{t}\:+\mathrm{4}−\mathrm{4}{t}^{\mathrm{2}} }\:=\:\int\:\:\:\:\frac{{dt}}{−\mathrm{2}{t}^{\mathrm{2}} \:+\mathrm{3}{t}\:+\mathrm{2}} \\ $$$$=−\int\:\:\:\:\frac{{dt}}{\mathrm{2}{t}^{\mathrm{2}} −\mathrm{3}{t}−\mathrm{2}}\:{let}\:{decompose} \\ $$$${F}\left({t}\right)=\:\frac{\mathrm{1}}{\mathrm{2}{t}^{\mathrm{2}} −\mathrm{3}{t}\:−\mathrm{2}} \\ $$$$\Delta\:=\mathrm{9}+\mathrm{16}\:=\mathrm{25}\:\Rightarrow{t}_{\mathrm{1}} =\frac{\mathrm{3}+\mathrm{5}}{\mathrm{4}}\:=\mathrm{2}\:{and}\:{t}_{\mathrm{2}} =\frac{\mathrm{3}−\mathrm{5}}{\mathrm{4}}\:=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${F}\left({t}\right)\:=\frac{\mathrm{1}}{\mathrm{2}\left({t}−\mathrm{2}\right)\left({t}+\frac{\mathrm{1}}{\mathrm{2}}\right)}\:=\frac{{a}}{{t}−\mathrm{2}}\:+\frac{{b}}{{t}+\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${a}\:=\:\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{5}} \\ $$$${b}\:=\:\frac{\mathrm{1}}{\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}\right)}\:=−\:\frac{\mathrm{1}}{\mathrm{3}}\:\Rightarrow{F}\left({t}\right)=\frac{\mathrm{1}}{\mathrm{5}\left({t}−\mathrm{2}\right)}\:−\frac{\mathrm{1}}{\mathrm{3}\left({t}+\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$${I}\:=−\int\:{F}\left({t}\right){dt}\:=\:\int\:\:\:\frac{\mathrm{1}}{\mathrm{3}\left({t}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{dt}\:−\frac{\mathrm{1}}{\mathrm{5}}\:\int\:\:\frac{{dt}}{{t}−\mathrm{2}}\:+{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}{ln}\mid{t}+\frac{\mathrm{1}}{\mathrm{2}}\mid\:−\frac{\mathrm{1}}{\mathrm{5}}{ln}\mid{t}−\mathrm{2}\mid\:+{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}{ln}\mid{tan}\left(\frac{{x}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\mid−\frac{\mathrm{1}}{\mathrm{5}}{ln}\mid{tan}\left(\frac{{x}}{\mathrm{2}}\right)−\mathrm{2}\mid\:+{c}\:. \\ $$$$ \\ $$

Commented by Tawa1 last updated on 10/Aug/18

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by math khazana by abdo last updated on 10/Aug/18

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 09/Aug/18

t=tan(x/2)  dt=sec^2 (x/2)×(1/2)dx  dx=((2dt)/(1+t^2 ))  ∫((2dt)/(1+t^2 ))×(1/(3.((2t)/(1+t^2 ))+4.((1−t^2 )/(1+t^2 ))))  2∫(dt/(6t+4−4t^2 ))  =2∫(dt/(−4(t^2 −(3/2)t−1)))  =((−1)/2)∫(dt/(t^2 −2.t.(3/4)+(9/(16))−(9/(16))−1))  =((−1)/2)∫(dt/((t−(3/4))^2 −((5/4))^2 ))  now use formjla ∫(dx/(x^2 −a^2 ))  =((−1)/2)∫(dt/((t−(3/4)+(5/4))(t−(3/4)−(5/4))))  =((−1)/2)∫(dt/((t+(1/2))(t−2)))  =((−1)/2)×(2/5)∫(((t+(1/2))−(t−2))/((t+(1/2))(t−2)))dt  =((−1)/5){∫(dt/(t−2))−∫(dt/(t+(1/2)))}  =((−1)/5){ln(((t−2)/(t+(1/2))))}+c  =((−1)/5){ln(((2t−4)/(2t+1)))}+c  =((−1)/5){ln(((2tan(x/2)−4)/(2tan(x/2)+1)))}+c

$${t}={tan}\frac{{x}}{\mathrm{2}}\:\:{dt}={sec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{2}}{dx} \\ $$$${dx}=\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\int\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }×\frac{\mathrm{1}}{\mathrm{3}.\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }+\mathrm{4}.\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }} \\ $$$$\mathrm{2}\int\frac{{dt}}{\mathrm{6}{t}+\mathrm{4}−\mathrm{4}{t}^{\mathrm{2}} } \\ $$$$=\mathrm{2}\int\frac{{dt}}{−\mathrm{4}\left({t}^{\mathrm{2}} −\frac{\mathrm{3}}{\mathrm{2}}{t}−\mathrm{1}\right)} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{2}.{t}.\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{9}}{\mathrm{16}}−\frac{\mathrm{9}}{\mathrm{16}}−\mathrm{1}} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\left({t}−\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{5}}{\mathrm{4}}\right)^{\mathrm{2}} } \\ $$$${now}\:{use}\:{formjla}\:\int\frac{{dx}}{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$$=\frac{−\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\left({t}−\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{5}}{\mathrm{4}}\right)\left({t}−\frac{\mathrm{3}}{\mathrm{4}}−\frac{\mathrm{5}}{\mathrm{4}}\right)} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\left({t}+\frac{\mathrm{1}}{\mathrm{2}}\right)\left({t}−\mathrm{2}\right)} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{2}}{\mathrm{5}}\int\frac{\left({t}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\left({t}−\mathrm{2}\right)}{\left({t}+\frac{\mathrm{1}}{\mathrm{2}}\right)\left({t}−\mathrm{2}\right)}{dt} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{5}}\left\{\int\frac{{dt}}{{t}−\mathrm{2}}−\int\frac{{dt}}{{t}+\frac{\mathrm{1}}{\mathrm{2}}}\right\} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{5}}\left\{{ln}\left(\frac{{t}−\mathrm{2}}{{t}+\frac{\mathrm{1}}{\mathrm{2}}}\right)\right\}+{c} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{5}}\left\{{ln}\left(\frac{\mathrm{2}{t}−\mathrm{4}}{\mathrm{2}{t}+\mathrm{1}}\right)\right\}+{c} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{5}}\left\{{ln}\left(\frac{\mathrm{2}{tan}\frac{{x}}{\mathrm{2}}−\mathrm{4}}{\mathrm{2}{tan}\frac{{x}}{\mathrm{2}}+\mathrm{1}}\right)\right\}+{c} \\ $$

Commented by Tawa1 last updated on 09/Aug/18

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by Tawa1 last updated on 09/Aug/18

Umm. i would love it if you can finish it sir. God bless you sir.  I am just learning

$$\mathrm{Umm}.\:\mathrm{i}\:\mathrm{would}\:\mathrm{love}\:\mathrm{it}\:\mathrm{if}\:\mathrm{you}\:\mathrm{can}\:\mathrm{finish}\:\mathrm{it}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{am}\:\mathrm{just}\:\mathrm{learning} \\ $$

Commented by Tawa1 last updated on 09/Aug/18

I appreciate your effort sir. God bless you

$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{effort}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 09/Aug/18

actually i do not remember formula...but know  how the formula is derived...now i am 48years  but still iknow how the formula i use  are derived

$${actually}\:{i}\:{do}\:{not}\:{remember}\:{formula}...{but}\:{know} \\ $$$${how}\:{the}\:{formula}\:{is}\:{derived}...{now}\:{i}\:{am}\:\mathrm{48}{years} \\ $$$${but}\:{still}\:{iknow}\:{how}\:{the}\:{formula}\:{i}\:{use}\:\:{are}\:{derived} \\ $$

Commented by Tawa1 last updated on 09/Aug/18

Noted sir

$$\mathrm{Noted}\:\mathrm{sir} \\ $$

Commented by MJS last updated on 09/Aug/18

this is called Weierstrass−Method  we have  t=tan (x/2) ⇒ dt=dx×(tan (x/2))′=(dx/(2cos^2  (x/2))) ⇒  ⇒ x=2arctan t; dx=2dtcos^2  (x/2) ⇒  ⇒ sin x =((2t)/(1+t^2 )); cos x =((1−t^2 )/(1+t^2 )); dx=((2dt)/(1+t^2 ))

$$\mathrm{this}\:\mathrm{is}\:\mathrm{called}\:\mathrm{Weierstrass}−\mathrm{Method} \\ $$$$\mathrm{we}\:\mathrm{have} \\ $$$${t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:\Rightarrow\:{dt}={dx}×\left(\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\right)'=\frac{{dx}}{\mathrm{2cos}^{\mathrm{2}} \:\frac{{x}}{\mathrm{2}}}\:\Rightarrow \\ $$$$\Rightarrow\:{x}=\mathrm{2arctan}\:{t};\:{dx}=\mathrm{2}{dt}\mathrm{cos}^{\mathrm{2}} \:\frac{{x}}{\mathrm{2}}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{sin}\:{x}\:=\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} };\:\mathrm{cos}\:{x}\:=\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} };\:{dx}=\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 09/Aug/18

another method  let 3=rcos∝     4=rsin∝  ∫(dx/(rcos∝sinx+rsin∝cosx))  ∫(dx/(r{sin(x+∝)}))  =(1/r)∫cosec(x+∝)dx  now use formula and put value of r snd ∝  3^2 +4^2 =r^2 (cos^2 ∝+sin^2 ∝)  r^2 =25  so r=5  tan∝=(4/3)     ∝=tan^(−1) ((4/3))  so ans is   =(1/5)ln{tan(((x+α)/2))}+c  =(1/5)ln{tan(((x+tan^(−1) ((4/3)))/2))}+c

$${another}\:{method} \\ $$$${let}\:\mathrm{3}={rcos}\propto\:\:\:\:\:\mathrm{4}={rsin}\propto \\ $$$$\int\frac{{dx}}{{rcos}\propto{sinx}+{rsin}\propto{cosx}} \\ $$$$\int\frac{{dx}}{{r}\left\{{sin}\left({x}+\propto\right)\right\}} \\ $$$$=\frac{\mathrm{1}}{{r}}\int{cosec}\left({x}+\propto\right){dx} \\ $$$${now}\:{use}\:{formula}\:{and}\:{put}\:{value}\:{of}\:{r}\:{snd}\:\propto \\ $$$$\mathrm{3}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} ={r}^{\mathrm{2}} \left({cos}^{\mathrm{2}} \propto+{sin}^{\mathrm{2}} \propto\right) \\ $$$${r}^{\mathrm{2}} =\mathrm{25}\:\:{so}\:{r}=\mathrm{5} \\ $$$${tan}\propto=\frac{\mathrm{4}}{\mathrm{3}}\:\:\:\:\:\propto={tan}^{−\mathrm{1}} \left(\frac{\mathrm{4}}{\mathrm{3}}\right) \\ $$$${so}\:{ans}\:{is}\: \\ $$$$=\frac{\mathrm{1}}{\mathrm{5}}{ln}\left\{{tan}\left(\frac{{x}+\alpha}{\mathrm{2}}\right)\right\}+{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{5}}{ln}\left\{{tan}\left(\frac{{x}+{tan}^{−\mathrm{1}} \left(\frac{\mathrm{4}}{\mathrm{3}}\right)}{\mathrm{2}}\right)\right\}+{c} \\ $$$$ \\ $$

Commented by Tawa1 last updated on 09/Aug/18

I really appreciate sir. God bless you.

$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com