All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 41586 by MJS last updated on 09/Aug/18
f(x)=−3+x+1x−1∫f(x)=?∫f−1(x)=?
Commented by prof Abdo imad last updated on 10/Aug/18
f(x)=y⇔x=f−1(y)⇒−3+x+1x−1=y⇒x+1x−1=y2+3⇒x+1x−1=(y2+3)2⇒x+1=x(y2+3)2−(y2+3)2⇒(1−(y2+3)2)x=−1−(y2+3)2⇒x=(y2+3)2+1(y2+3)2−1=1+2(y2+3)2−1⇒f−1(x)=1+2(x2+3)2−1⇒∫f−1(x)dx=x+2∫dx(x2+3)2−1+cbut∫2dx(x2+3)2−1=∫2dx(x2+4)(x2+2)=∫{1x2+2−1x2+4}dx=∫dxx2+2−∫dxx2+4∫dxx2+2=x=2t∫2dt2(1+t2)=12arctan(x2)∫dxx2+4=x=2t∫2dt4(1+t2)=12arctan(t2)⇒∫f−1(x)dx=x+12arctan(x2)+12arctan(x2)+c
Answered by MJS last updated on 09/Aug/18
∫−3+x+1x−1dx=[t=−3+x+1x−1→dx=−8t(t2+3)(t2+2)2(t2+4)2dt]=−8∫t2(t2+3)(t2+2)2(t2+4)2dt==−8∫(−12(t2+2)2+1(t2+4)2+14(t2+2)−14(t2+4))dt==4∫dt(t2+2)2−8∫dt(t2+4)2−2∫dtt2+2+2∫dtt2+4=[∫dx(x2+p)2=x2p(x2+p)+p32p3arctanxpp][∫dxx2+p=pparctanxpp]=tt2+2+22arctant22−tt2+4−12arctant2−2arctant22+arctant2==2t(t2+2)(t2+4)+12(arctant2−2arctant22)==(x+1−3x−1)(x−1)3+12(arctan(12−3+x+1x−1)−2arctan(12−6+2x+1x−1))+C
Answered by ajfour last updated on 10/Aug/18
(y2+3)2=1+2x−1x=1+2(y2+3)2−1f−1(x)=1+2(x2+3)2−1I=∫[1+2(x2+3)2−1]dx=x+2I1I1=∫dx(x2+3)2−1=∫dx(x2+2)(x2+4)=12∫dxx2+2−12∫dxx2+4hence∫f−1(x)dx=x+12tan−1x2−12tan−1x2+c.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com