Question and Answers Forum

All Questions      Topic List

Probability and Statistics Questions

Previous in All Question      Next in All Question      

Previous in Probability and Statistics      Next in Probability and Statistics      

Question Number 4166 by Filup last updated on 30/Dec/15

Commented by prakash jain last updated on 31/Dec/15

To go broke: k wins, 2+k losses  Σ_(k=0) ^∞ ((3/4))^k ((1/4))^(2+k) = ((((1/2))^2 )/(1−(3/(16)))) = (1/(13)) ?

$$\mathrm{To}\:\mathrm{go}\:\mathrm{broke}:\:{k}\:\mathrm{wins},\:\mathrm{2}+{k}\:\mathrm{losses} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{k}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}+{k}} =\:\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{1}−\frac{\mathrm{3}}{\mathrm{16}}}\:=\:\frac{\mathrm{1}}{\mathrm{13}}\:? \\ $$

Commented by Filup last updated on 31/Dec/15

I submitted thw answer and it was wrong.  Hmm... this is a tricky question

$$\mathrm{I}\:\mathrm{submitted}\:\mathrm{thw}\:\mathrm{answer}\:\mathrm{and}\:\mathrm{it}\:\mathrm{was}\:\mathrm{wrong}. \\ $$$$\mathrm{Hmm}...\:\mathrm{this}\:\mathrm{is}\:\mathrm{a}\:\mathrm{tricky}\:\mathrm{question} \\ $$

Commented by Filup last updated on 31/Dec/15

Commented by prakash jain last updated on 31/Dec/15

What is the correct answer?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{correct}\:\mathrm{answer}? \\ $$

Commented by Yozzii last updated on 31/Dec/15

Let n=event broke after nth round     g_(n−1) =event of having $1 after (n−1)th round           h=event you lose $1 in a round  ∴P(n)=P(h)P(g_(n−1) )=(1/4)P(g_(n−1) )  n=2: P(2)=0.25P(g_1 )=0.25×0.25=0.25^2   n=3: P(3)=0.25P(g_2 )=0.25×0  n=4:P(4)=0.25P(g_3 )=0.25×...  start even (n=0),n=1→odd⇒n=2→even (cannot have $1⇒P(g_(even) )=0)    I′m thinking that  P(go broke)=Σ_(n=2) ^∞ P(n)=0.25Σ_(n=1) ^∞ P(g_(n−1) ).

$${Let}\:{n}={event}\:{broke}\:{after}\:{nth}\:{round} \\ $$$$\:\:\:{g}_{{n}−\mathrm{1}} ={event}\:{of}\:{having}\:\$\mathrm{1}\:{after}\:\left({n}−\mathrm{1}\right){th}\:{round} \\ $$$$\:\:\:\:\:\:\:\:\:{h}={event}\:{you}\:{lose}\:\$\mathrm{1}\:{in}\:{a}\:{round} \\ $$$$\therefore{P}\left({n}\right)={P}\left({h}\right){P}\left({g}_{{n}−\mathrm{1}} \right)=\frac{\mathrm{1}}{\mathrm{4}}{P}\left({g}_{{n}−\mathrm{1}} \right) \\ $$$${n}=\mathrm{2}:\:{P}\left(\mathrm{2}\right)=\mathrm{0}.\mathrm{25}{P}\left({g}_{\mathrm{1}} \right)=\mathrm{0}.\mathrm{25}×\mathrm{0}.\mathrm{25}=\mathrm{0}.\mathrm{25}^{\mathrm{2}} \\ $$$${n}=\mathrm{3}:\:{P}\left(\mathrm{3}\right)=\mathrm{0}.\mathrm{25}{P}\left({g}_{\mathrm{2}} \right)=\mathrm{0}.\mathrm{25}×\mathrm{0} \\ $$$${n}=\mathrm{4}:{P}\left(\mathrm{4}\right)=\mathrm{0}.\mathrm{25}{P}\left({g}_{\mathrm{3}} \right)=\mathrm{0}.\mathrm{25}×... \\ $$$${start}\:{even}\:\left({n}=\mathrm{0}\right),{n}=\mathrm{1}\rightarrow{odd}\Rightarrow{n}=\mathrm{2}\rightarrow{even}\:\left({cannot}\:{have}\:\$\mathrm{1}\Rightarrow{P}\left({g}_{{even}} \right)=\mathrm{0}\right) \\ $$$$ \\ $$$${I}'{m}\:{thinking}\:{that} \\ $$$${P}\left({go}\:{broke}\right)=\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}{P}\left({n}\right)=\mathrm{0}.\mathrm{25}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{P}\left({g}_{{n}−\mathrm{1}} \right). \\ $$$$ \\ $$

Commented by Yozzii last updated on 31/Dec/15

Commented by Yozzii last updated on 31/Dec/15

I′ve created a crazy ′event sequence′  diagram. The red points represent  having $1 after the nth round,  where the nth round is given by  the nth circle  Green dots represent  $2. Deep purple dots represent   termination of a game.  All remaining dots could be $3 or  $4,etc...Following the colour coding helps  to think of what could possibly   lead to $2 for example. I′m only  concerned with counting resulting red dots.    So, for n=1: you can get $1 in 1 way  for n=3, you get $1 in 2 ways  for n=5 you get $1 in 5 ways  for n=7, you get $1 in 14 ways    Let a(n)=number of ways of getting  $1 after (2n−1)th round.  ⇒a(1)=1,a(2)=2,a(3)=5,a(4)=14  a(2)−a(1)=2−1=1=3^0   a(3)−a(2)=5−2=3^1   a(4)−a(3)=14−5=9=3^2   a(n+1)−a(n)=3^(n−1)  ?      These are important in finding  the multiples for each event   probability (getting $1 on the nth round).

$${I}'{ve}\:{created}\:{a}\:{crazy}\:'{event}\:{sequence}' \\ $$$${diagram}.\:{The}\:{red}\:{points}\:{represent} \\ $$$${having}\:\$\mathrm{1}\:{after}\:{the}\:{nth}\:{round}, \\ $$$${where}\:{the}\:{nth}\:{round}\:{is}\:{given}\:{by} \\ $$$${the}\:{nth}\:{circle}\:\:{Green}\:{dots}\:{represent} \\ $$$$\$\mathrm{2}.\:{Deep}\:{purple}\:{dots}\:{represent}\: \\ $$$${termination}\:{of}\:{a}\:{game}. \\ $$$${All}\:{remaining}\:{dots}\:{could}\:{be}\:\$\mathrm{3}\:{or} \\ $$$$\$\mathrm{4},{etc}...{Following}\:{the}\:{colour}\:{coding}\:{helps} \\ $$$${to}\:{think}\:{of}\:{what}\:{could}\:{possibly}\: \\ $$$${lead}\:{to}\:\$\mathrm{2}\:{for}\:{example}.\:{I}'{m}\:{only} \\ $$$${concerned}\:{with}\:{counting}\:{resulting}\:{red}\:{dots}. \\ $$$$ \\ $$$${So},\:{for}\:{n}=\mathrm{1}:\:{you}\:{can}\:{get}\:\$\mathrm{1}\:{in}\:\mathrm{1}\:{way} \\ $$$${for}\:{n}=\mathrm{3},\:{you}\:{get}\:\$\mathrm{1}\:{in}\:\mathrm{2}\:{ways} \\ $$$${for}\:{n}=\mathrm{5}\:{you}\:{get}\:\$\mathrm{1}\:{in}\:\mathrm{5}\:{ways} \\ $$$${for}\:{n}=\mathrm{7},\:{you}\:{get}\:\$\mathrm{1}\:{in}\:\mathrm{14}\:{ways} \\ $$$$ \\ $$$${Let}\:{a}\left({n}\right)={number}\:{of}\:{ways}\:{of}\:{getting} \\ $$$$\$\mathrm{1}\:{after}\:\left(\mathrm{2}{n}−\mathrm{1}\right){th}\:{round}. \\ $$$$\Rightarrow{a}\left(\mathrm{1}\right)=\mathrm{1},{a}\left(\mathrm{2}\right)=\mathrm{2},{a}\left(\mathrm{3}\right)=\mathrm{5},{a}\left(\mathrm{4}\right)=\mathrm{14} \\ $$$${a}\left(\mathrm{2}\right)−{a}\left(\mathrm{1}\right)=\mathrm{2}−\mathrm{1}=\mathrm{1}=\mathrm{3}^{\mathrm{0}} \\ $$$${a}\left(\mathrm{3}\right)−{a}\left(\mathrm{2}\right)=\mathrm{5}−\mathrm{2}=\mathrm{3}^{\mathrm{1}} \\ $$$${a}\left(\mathrm{4}\right)−{a}\left(\mathrm{3}\right)=\mathrm{14}−\mathrm{5}=\mathrm{9}=\mathrm{3}^{\mathrm{2}} \\ $$$${a}\left({n}+\mathrm{1}\right)−{a}\left({n}\right)=\mathrm{3}^{{n}−\mathrm{1}} \:?\:\: \\ $$$$ \\ $$$${These}\:{are}\:{important}\:{in}\:{finding} \\ $$$${the}\:{multiples}\:{for}\:{each}\:{event}\: \\ $$$${probability}\:\left({getting}\:\$\mathrm{1}\:{on}\:{the}\:{nth}\:{round}\right). \\ $$

Commented by prakash jain last updated on 31/Dec/15

Mistake in my previous argument:  k=0: ((1/4))^2   k=1: ((3/4))((1/4))^3 +((1/4))^2 ((3/4))((1/4))=2((3/4))((1/4))^3   k=2:^(2k) C_k  ((3/4))^k ((1/4))^(k+2)   k wins can occur^(2k) C_k  different ways.  P=Σ_(k=0) ^∞ ^(2k) C_k ((3/4))^k ((1/4))^(k+2)   Treating one dollar loss is easier:

$$\mathrm{Mistake}\:\mathrm{in}\:\mathrm{my}\:\mathrm{previous}\:\mathrm{argument}: \\ $$$${k}=\mathrm{0}:\:\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} \\ $$$${k}=\mathrm{1}:\:\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{3}} +\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)\left(\frac{\mathrm{1}}{\mathrm{4}}\right)=\mathrm{2}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{3}} \\ $$$${k}=\mathrm{2}:\:^{\mathrm{2}{k}} {C}_{{k}} \:\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{k}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{{k}+\mathrm{2}} \\ $$$${k}\:\mathrm{wins}\:\mathrm{can}\:\mathrm{occur}\:^{\mathrm{2}{k}} {C}_{{k}} \:\mathrm{different}\:\mathrm{ways}. \\ $$$${P}=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:^{\mathrm{2}{k}} {C}_{{k}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{k}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{{k}+\mathrm{2}} \\ $$$$\mathrm{Treating}\:\mathrm{one}\:\mathrm{dollar}\:\mathrm{loss}\:\mathrm{is}\:\mathrm{easier}: \\ $$

Commented by prakash jain last updated on 31/Dec/15

For losing one dollar  Σ_(k=0) ^∞ ((3/4))^k ((1/4))^(k+1) =(4/(13))  In this case the only possibility is k  consecutive wins, followed by k+1  consecutive losses to lose 1 dollar in 2k+1  moves.  So P=((16)/(169))

$$\mathrm{For}\:\mathrm{losing}\:\mathrm{one}\:\mathrm{dollar} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{k}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{{k}+\mathrm{1}} =\frac{\mathrm{4}}{\mathrm{13}} \\ $$$$\mathrm{In}\:\mathrm{this}\:\mathrm{case}\:\mathrm{the}\:\mathrm{only}\:\mathrm{possibility}\:\mathrm{is}\:{k} \\ $$$$\mathrm{consecutive}\:\mathrm{wins},\:\mathrm{followed}\:\mathrm{by}\:{k}+\mathrm{1} \\ $$$$\mathrm{consecutive}\:\mathrm{losses}\:\mathrm{to}\:\mathrm{lose}\:\mathrm{1}\:\mathrm{dollar}\:\mathrm{in}\:\mathrm{2}{k}+\mathrm{1} \\ $$$$\mathrm{moves}. \\ $$$$\mathrm{So}\:\mathrm{P}=\frac{\mathrm{16}}{\mathrm{169}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com