All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 41675 by Raj Singh last updated on 11/Aug/18
Commented by math khazana by abdo last updated on 12/Aug/18
I=∫dx1+cosxsinx=∫sinxsinx+cosxdx=tan(x2)=t∫2t1+t22t1+t2+1−t21+t22dt1+t2=∫2t2t+1−t22dt1+t2=∫4t(1+t2)(−t2+2t+1)dt=−∫4tdt(t2+1)(t2−2t−1)letdecomposeF(t)=4t(t2+1)(t2−2t−1)rootsoft2−2t−1Δ′=1−(−1)=2⇒t1=1+2andt2=1−2F(t)=4t(t2+1)(t−t1)(t−t2)=at−t1+bt−t2+ct+dt2+1a=4t1(t12+1)(22)=2t12(t12+1)=2+222(4+22)=1+22(2+2)b=4t2(t22+1)(−22)=4(1−2)(4−22)(−22)=1−2(2−2)(−2)=2−12(2−2)...becontinued...
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Aug/18
∫dx1+cotx∫sinxsinx+cosxdx=12∫cosx+sinx−(cosx−sinx)sinx+cosxdx=12[∫dx−∫cosx−sinxsinx+cosxdx=12[∫dx−∫d(sinx+cosx)sinx+cosx]=12[x−ln(sinx+cosx)]+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com