Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41677 by math khazana by abdo last updated on 11/Aug/18

calculate A = ∫_0 ^(π/4)  cos^8 xdx and   B= ∫_0 ^(π/4)  sin^8 xdx  2) calculate A +B and A−B  3) calculate A^2  −B^2

calculateA=0π4cos8xdxandB=0π4sin8xdx2)calculateA+BandAB3)calculateA2B2

Commented by math khazana by abdo last updated on 12/Aug/18

let  A_n = ∫_0 ^(π/4)  cos^(2n) xdx   we haveA =A_4   A_(n+1) = ∫_0 ^(π/4)   cos^(2n) (1−sin^2 x)dx  =A_n  −∫_0 ^(π/4)  sin^2 x cos^(2n) xdx  by parts  ∫_0 ^(π/4)  sinx(−sinx)cos^(2n) x dx  = [(1/(2n+1))sinxcos^(2n+1) x ]_0 ^(π/4)  −∫_0 ^(π/4)  (1/(2n+1)) cos^(2n+2) xdx  =(1/(2n+1))( (1/(√2)))^(2n+2)  −(1/(2n+1)) A_(n+1)  ⇒  (1+(1/(2n+1)))A_(n+1) =A_n    +(1/((2n+1)2^(n+1) )) ⇒  ((2n+2)/(2n+1)) A_(n+1) = A_n  +(1/((2n+1)2^(n+1) )) ⇒  A_(n+1) =((2n+1)/(2n+2)) A_n  + (1/((2n+2)2^(n+1) )) ⇒  A_4 =(7/8) A_3  + (1/(8.2^4 ))  A_3 =(5/6) A_2  + (1/(6.2^3 ))  A_2 = (3/4) A_1  + (1/(4.2^2 ))  A_1 =(1/2) A_0  +(1/4) ⇒  A_4 =(7/8){(5/6) A_2  +(1/(6.2^3 ))} +(1/(8.2^4 ))  = ((35)/(48)) A_2   +(7/(48.2^3 )) +(1/(8.2^4 ))  =((35)/(48)){ (3/4) A_1 +(1/(4.2^2 ))} +(7/(48.2^3 )) +(1/(8.2^4 ))  = ((105)/(192)) A_1  + ((35)/(192.2^2 )) +(7/(48.2^3 )) +(1/(8.2^4 ))  =((105)/(192)){(1/2)A_0  +(1/4)} +((35)/(192.2^2 )) +(7/(48.2^3 )) +(1/(8.2^4 ))  =((105)/(192)){ (π/8) +(1/4)} +((35)/(192.2^2 )) +(7/(48.2^3 )) +(1/(8.2^4 )) =A

letAn=0π4cos2nxdxwehaveA=A4An+1=0π4cos2n(1sin2x)dx=An0π4sin2xcos2nxdxbyparts0π4sinx(sinx)cos2nxdx=[12n+1sinxcos2n+1x]0π40π412n+1cos2n+2xdx=12n+1(12)2n+212n+1An+1(1+12n+1)An+1=An+1(2n+1)2n+12n+22n+1An+1=An+1(2n+1)2n+1An+1=2n+12n+2An+1(2n+2)2n+1A4=78A3+18.24A3=56A2+16.23A2=34A1+14.22A1=12A0+14A4=78{56A2+16.23}+18.24=3548A2+748.23+18.24=3548{34A1+14.22}+748.23+18.24=105192A1+35192.22+748.23+18.24=105192{12A0+14}+35192.22+748.23+18.24=105192{π8+14}+35192.22+748.23+18.24=A

Commented by math khazana by abdo last updated on 12/Aug/18

let B_n = ∫_0 ^(π/4)  sin^(2n) xdx  we have B=B_4   B_(n+1) = ∫_0 ^(π/4)  sin^(2n) (1−cos^2 x)dx  = ∫_0 ^(π/4)  sin^(2n) xdx − ∫_0 ^(π/4)  cosx (cosx)sin^(2n) xdx  by  parts   ∫_0 ^(π/4)  cosx(cosx)sin^(2n) xdx=[(1/(2n+1))cosxsin^(2n+1) x]_0 ^(π/4)   − ∫_0 ^(π/4)  (−sinx) (1/(2n+1)) sin^(2n+1) xdx  =  (1/((2n+1)))((1/(√2)))^(2n+2)   +(1/(2n+1)) ∫_0 ^(π/4)  sin^(2n+2) xdx  = (1/((2n+1)2^(n+1) ))  +(1/(2n+1)) B_(n+1)   ⇒  B_(n+1) =B_n  − (1/((2n+1)2^(n+1) )) −(1/(2n+1)) B_(n+1)  ⇒  (1+(1/(2n+1)))B_(n+1) =B_n −(1/((2n+1)2^(n+1) )) ⇒  ((2n+2)/(2n+1)) B_(n+1) =B_n −(1/((2n+1)2^(n+1) )) ⇒  B_(n+1) =((2n+1)/(2n+2)) B_n  − (1/((2n+2)2^(n+1) ))  ...be continued...

letBn=0π4sin2nxdxwehaveB=B4Bn+1=0π4sin2n(1cos2x)dx=0π4sin2nxdx0π4cosx(cosx)sin2nxdxbyparts0π4cosx(cosx)sin2nxdx=[12n+1cosxsin2n+1x]0π40π4(sinx)12n+1sin2n+1xdx=1(2n+1)(12)2n+2+12n+10π4sin2n+2xdx=1(2n+1)2n+1+12n+1Bn+1Bn+1=Bn1(2n+1)2n+112n+1Bn+1(1+12n+1)Bn+1=Bn1(2n+1)2n+12n+22n+1Bn+1=Bn1(2n+1)2n+1Bn+1=2n+12n+2Bn1(2n+2)2n+1...becontinued...

Answered by ajfour last updated on 11/Aug/18

A=∫_0 ^(  π/4) cos^8 xdx     =(1/(16))∫_0 ^(  π/4) (1+cos 2x)^4 dx    =(1/(16))∫_0 ^(  π/4) (1+4cos 2x+6cos^2 2x                       +4cos^3 2x+cos^4 2x)dx   =(π/(64))+((4sin 2x)/(32))∣_0 ^(π/4) +(3/(16))∫_0 ^(  π/4) (1+cos 4x)dx           +(1/(16))∫_0 ^(  π/4) (cos 6x+3cos 2x)dx           +(1/(64))∫_0 ^(  π/4) (1+cos 4x)^2 dx  =(π/(64))+(1/8)+((3π)/(64))+0−(1/(96))+(3/(32))+(π/(256))            +0+(1/(128))∫_0 ^(  π/4) (1+cos 8x)dx  = ((17π)/(256))+((20)/(96))+(π/(512))   ⇒   A= ((35π)/(512))+((20)/(96))  ________________________      B=∫_0 ^(  π/4) sin^8 xdx      =(1/(16))∫_0 ^(  π/4) (1−cos 2x)^4 dx    =(1/(16))∫_0 ^(  π/4) (1−4cos 2x+6cos^2 2x                     −4cos^3 2x+cos^4 2x)dx     =(π/(64))−(1/8)+((3π)/(64))+(1/(96))−(3/(32))+(π/(256))+(π/(512))  ⇒    B = ((35π)/(512))−((20)/(96))  ________________________  A+B = ((35π)/(256))  A−B = (5/(12))  A^2 −B^2  = ((175π)/(3072)) .

A=0π/4cos8xdx=1160π/4(1+cos2x)4dx=1160π/4(1+4cos2x+6cos22x+4cos32x+cos42x)dx=π64+4sin2x320π/4+3160π/4(1+cos4x)dx+1160π/4(cos6x+3cos2x)dx+1640π/4(1+cos4x)2dx=π64+18+3π64+0196+332+π256+0+11280π/4(1+cos8x)dx=17π256+2096+π512A=35π512+2096________________________B=0π/4sin8xdx=1160π/4(1cos2x)4dx=1160π/4(14cos2x+6cos22x4cos32x+cos42x)dx=π6418+3π64+196332+π256+π512B=35π5122096________________________A+B=35π256AB=512A2B2=175π3072.

Answered by tanmay.chaudhury50@gmail.com last updated on 11/Aug/18

method 1  cos^8 x+sin^8 x  =(cos^4 x+sin^4 x)^2 −2cos^4 xsin^4 x  ={(cos^2 x+sin^2 x)^2 −2cos^2 x.sin^2 x}^2 −(1/8)×(2sinxcosx)^4   ={1−(1/2)(2sinxcosx)^2 }^2 −(1/8)×(sin2x)^4   ={((2−sin^2 2x)/2)}^2 −(1/8)(((1−cos4x)/2))^2   ={((2−((1−cos4x)/2))/2)}^2 −(1/8)(((1−2cos4x+((1+cos8x)/2))/4))  ={((4−1+cos4x)/4)}^2 −(1/8)(((2−4cos4x+1+cos8x)/8))  ={((9+6cos4x+((1+cos8x)/2))/(16))}−(((cos8x−4cos4x+3)/(64)))  ={((18+12cos4x+1+cos8x)/(32))}−(((cos8x−4cos4x+3)/(64)))  =(((cos8x+12cos4x+19)/(32)))−(((cos8x−4cos4x+3)/(64)))  =(((2cos8x+24cos4x+38−cos8x+4cos4x−3)/(64)))  =(((cos8x+28cos4x+35)/(64)))  so A+B=  ∫_0 ^(Π/4) ((cos8x+28cos4x+35)/(64))dx  =(1/(64))∣(((sin8x)/8)+((28sin4x)/4)+35x)∣_0 ^(Π/4)   =(1/(64))(((sin2Π)/8)+((28sinΠ)/4)+((35×(Π/4))/))  =(1/(64))×((35Π)/4)=((35Π)/(256))  pls check  i shall solve it by gamma beta function later

method1cos8x+sin8x=(cos4x+sin4x)22cos4xsin4x={(cos2x+sin2x)22cos2x.sin2x}218×(2sinxcosx)4={112(2sinxcosx)2}218×(sin2x)4={2sin22x2}218(1cos4x2)2={21cos4x22}218(12cos4x+1+cos8x24)={41+cos4x4}218(24cos4x+1+cos8x8)={9+6cos4x+1+cos8x216}(cos8x4cos4x+364)={18+12cos4x+1+cos8x32}(cos8x4cos4x+364)=(cos8x+12cos4x+1932)(cos8x4cos4x+364)=(2cos8x+24cos4x+38cos8x+4cos4x364)=(cos8x+28cos4x+3564)soA+B=0Π4cos8x+28cos4x+3564dx=164(sin8x8+28sin4x4+35x)0Π4=164(sin2Π8+28sinΠ4+35×Π4)=164×35Π4=35Π256plscheckishallsolveitbygammabetafunctionlater

Terms of Service

Privacy Policy

Contact: info@tinkutara.com