Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41678 by math khazana by abdo last updated on 11/Aug/18

prove that  ∫_0 ^∞  cos(x^2 )dx=∫_0 ^∞  sin(x^2 )dx by using  only series.

$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{\mathrm{2}} \right){dx}=\int_{\mathrm{0}} ^{\infty} \:{sin}\left({x}^{\mathrm{2}} \right){dx}\:{by}\:{using} \\ $$$${only}\:{series}. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 11/Aug/18

p+iq=∫_0 ^∞ e^(ix^2 ) dx  −t=ix^2     i^2 t=ix^2   it=x^2   2xdx=idt  dx=((idt)/(2x))=((idt)/(2(√(it)) ))=(((√i) t^((−1)/2) )/2)dt  ∫_0 ^∞ e^(−t) .(((√i) t^((−1)/2) )/2)dt  (((√i) )/2)∫_0 ^∞ e^(−t) .t^((1/2)−1) dt  =(((√i) )/2)⌈((1/2))=(((√Π) )/2)×(((√i) )/)  now calculating the value of (√i)   (√i)   =(1/((√2) ))×(√(1−1+2i))   =(1/((√2) ))×(√(1^2 +i^2 +2×1×i))   =(1/((√2) ))×(√((1+i)^2  ))  =(1/(√2))×(1+i)   =(1/((√2) ))+i×(1/((√2) ))  so p+iq=∫_0 ^∞ e^(ix^2 ) dx=(((√Π) )/2)×(√i) =(((√Π) )/2)((1/((√2) ))+i(1/((√2) )))  p=(((√Π) )/(2(√2) ))    q=(((√Π) )/(2(√2)))

$${p}+{iq}=\int_{\mathrm{0}} ^{\infty} {e}^{{ix}^{\mathrm{2}} } {dx} \\ $$$$−{t}={ix}^{\mathrm{2}} \:\:\:\:{i}^{\mathrm{2}} {t}={ix}^{\mathrm{2}} \\ $$$${it}={x}^{\mathrm{2}} \\ $$$$\mathrm{2}{xdx}={idt} \\ $$$${dx}=\frac{{idt}}{\mathrm{2}{x}}=\frac{{idt}}{\mathrm{2}\sqrt{{it}}\:}=\frac{\sqrt{{i}}\:{t}^{\frac{−\mathrm{1}}{\mathrm{2}}} }{\mathrm{2}}{dt} \\ $$$$\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} .\frac{\sqrt{{i}}\:{t}^{\frac{−\mathrm{1}}{\mathrm{2}}} }{\mathrm{2}}{dt} \\ $$$$\frac{\sqrt{{i}}\:}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} .{t}^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} {dt} \\ $$$$=\frac{\sqrt{{i}}\:}{\mathrm{2}}\lceil\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\sqrt{\Pi}\:}{\mathrm{2}}×\frac{\sqrt{{i}}\:}{} \\ $$$${now}\:{calculating}\:{the}\:{value}\:{of}\:\sqrt{{i}}\: \\ $$$$\sqrt{{i}}\: \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}\:}×\sqrt{\mathrm{1}−\mathrm{1}+\mathrm{2}{i}}\: \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}\:}×\sqrt{\mathrm{1}^{\mathrm{2}} +{i}^{\mathrm{2}} +\mathrm{2}×\mathrm{1}×{i}}\: \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}\:}×\sqrt{\left(\mathrm{1}+{i}\right)^{\mathrm{2}} \:} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}×\left(\mathrm{1}+{i}\right)\: \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}\:}+{i}×\frac{\mathrm{1}}{\sqrt{\mathrm{2}}\:} \\ $$$${so}\:{p}+{iq}=\int_{\mathrm{0}} ^{\infty} {e}^{{ix}^{\mathrm{2}} } {dx}=\frac{\sqrt{\Pi}\:}{\mathrm{2}}×\sqrt{{i}}\:=\frac{\sqrt{\Pi}\:}{\mathrm{2}}\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}\:}+{i}\frac{\mathrm{1}}{\sqrt{\mathrm{2}}\:}\right) \\ $$$${p}=\frac{\sqrt{\Pi}\:}{\mathrm{2}\sqrt{\mathrm{2}}\:}\:\:\:\:{q}=\frac{\sqrt{\Pi}\:}{\mathrm{2}\sqrt{\mathrm{2}}}\:\: \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com