Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 41686 by ajfour last updated on 11/Aug/18

Commented by ajfour last updated on 11/Aug/18

Find radius of circle in terms of a.

$${Find}\:{radius}\:{of}\:{circle}\:{in}\:{terms}\:{of}\:{a}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 11/Aug/18

wait  pls...

$${wait}\:\:{pls}... \\ $$

Answered by ajfour last updated on 12/Aug/18

Let intersection of directrix and  axis be the origin, then eq. of  parabola is     y=(x^2 /(4a))+a  eq. of upper half circle     y=r+(√(r^2 −(x−r)^2 ))  solving the two  (x^2 /(4a))+a = r+(√(x(2r−x)))  let  x=r−rsin θ  ; then    ((r^2 (1−sin θ)^2 )/(4a))+a=r+rcos θ   ..(i)  and  (dy/dx)= tan θ=(x/(2a))  ⇒  tan θ=((r(1−sin θ))/(2a))       ....(ii)  using (ii) in (i):     tan^2 θ+1=(r/a)(1+cos θ)  ⇒  (1+cos θ)cos^2 θ= (a/r)     ...(iii)  now using (ii) again   (1+cos θ)cos^2 θ=(((1−sin θ)cos θ)/(2sin θ))  ⇒  2(1+cos θ)sin θcos θ=1−sin θ  ⇒  2(1+cos θ)tan θ(1+sin θ)=1  let   tan (θ/2) = t    then     2(1+((1−t^2 )/(1+t^2 )))(((2t)/(1−t^2 )))(1+((2t)/(1+t^2 )))=1  ⇒  8t(1+t)^2 = 1−t^4   ⇒    8t(1+t)=(1+t^2 )(1−t)  ⇒     8t+8t^2  = 1−t+t^2 −t^3   or     t^3 +7t^2 +9t−1=0  ⇒     t ≈ 0.102775  (the +ve root)  knowing t we use eq. (iii)    r=(a/((1+cos θ)cos^2 θ))     r =(a/((1+((1−t^2 )/(1+t^2 )))(((1−t^2 )/(1+t^2 )))^2 ))    r =((a(1+t^2 )^3 )/(2(1−t^2 )^2 ))  ≈ 0.527a .

$${Let}\:{intersection}\:{of}\:{directrix}\:{and} \\ $$$${axis}\:{be}\:{the}\:{origin},\:{then}\:{eq}.\:{of} \\ $$$${parabola}\:{is} \\ $$$$\:\:\:{y}=\frac{{x}^{\mathrm{2}} }{\mathrm{4}{a}}+{a} \\ $$$${eq}.\:{of}\:{upper}\:{half}\:{circle} \\ $$$$\:\:\:{y}={r}+\sqrt{{r}^{\mathrm{2}} −\left({x}−{r}\right)^{\mathrm{2}} } \\ $$$${solving}\:{the}\:{two} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{4}{a}}+{a}\:=\:{r}+\sqrt{{x}\left(\mathrm{2}{r}−{x}\right)} \\ $$$${let}\:\:{x}={r}−{r}\mathrm{sin}\:\theta\:\:;\:{then} \\ $$$$\:\:\frac{{r}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{sin}\:\theta\right)^{\mathrm{2}} }{\mathrm{4}{a}}+{a}={r}+{r}\mathrm{cos}\:\theta\:\:\:..\left({i}\right) \\ $$$${and}\:\:\frac{{dy}}{{dx}}=\:\mathrm{tan}\:\theta=\frac{{x}}{\mathrm{2}{a}} \\ $$$$\Rightarrow\:\:\mathrm{tan}\:\theta=\frac{{r}\left(\mathrm{1}−\mathrm{sin}\:\theta\right)}{\mathrm{2}{a}}\:\:\:\:\:\:\:....\left({ii}\right) \\ $$$${using}\:\left({ii}\right)\:{in}\:\left({i}\right): \\ $$$$\:\:\:\mathrm{tan}\:^{\mathrm{2}} \theta+\mathrm{1}=\frac{{r}}{{a}}\left(\mathrm{1}+\mathrm{cos}\:\theta\right) \\ $$$$\Rightarrow\:\:\left(\mathrm{1}+\mathrm{cos}\:\theta\right)\mathrm{cos}\:^{\mathrm{2}} \theta=\:\frac{{a}}{{r}}\:\:\:\:\:...\left({iii}\right) \\ $$$${now}\:{using}\:\left({ii}\right)\:{again} \\ $$$$\:\left(\mathrm{1}+\mathrm{cos}\:\theta\right)\mathrm{cos}\:^{\mathrm{2}} \theta=\frac{\left(\mathrm{1}−\mathrm{sin}\:\theta\right)\mathrm{cos}\:\theta}{\mathrm{2sin}\:\theta} \\ $$$$\Rightarrow\:\:\mathrm{2}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)\mathrm{sin}\:\theta\mathrm{cos}\:\theta=\mathrm{1}−\mathrm{sin}\:\theta \\ $$$$\Rightarrow\:\:\mathrm{2}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)\mathrm{tan}\:\theta\left(\mathrm{1}+\mathrm{sin}\:\theta\right)=\mathrm{1} \\ $$$${let}\:\:\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\:=\:{t}\:\:\:\:{then} \\ $$$$\:\:\:\mathrm{2}\left(\mathrm{1}+\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)\left(\frac{\mathrm{2}{t}}{\mathrm{1}−{t}^{\mathrm{2}} }\right)\left(\mathrm{1}+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right)=\mathrm{1} \\ $$$$\Rightarrow\:\:\mathrm{8}{t}\left(\mathrm{1}+{t}\right)^{\mathrm{2}} =\:\mathrm{1}−{t}^{\mathrm{4}} \\ $$$$\Rightarrow\:\:\:\:\mathrm{8}{t}\left(\mathrm{1}+{t}\right)=\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{1}−{t}\right) \\ $$$$\Rightarrow\:\:\:\:\:\mathrm{8}{t}+\mathrm{8}{t}^{\mathrm{2}} \:=\:\mathrm{1}−{t}+{t}^{\mathrm{2}} −{t}^{\mathrm{3}} \\ $$$${or}\:\:\:\:\:{t}^{\mathrm{3}} +\mathrm{7}{t}^{\mathrm{2}} +\mathrm{9}{t}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\:\:\boldsymbol{{t}}\:\approx\:\mathrm{0}.\mathrm{102775}\:\:\left({the}\:+{ve}\:{root}\right) \\ $$$${knowing}\:\boldsymbol{{t}}\:{we}\:{use}\:{eq}.\:\left({iii}\right) \\ $$$$\:\:{r}=\frac{{a}}{\left(\mathrm{1}+\mathrm{cos}\:\theta\right)\mathrm{cos}\:^{\mathrm{2}} \theta} \\ $$$$\:\:\:\boldsymbol{{r}}\:=\frac{{a}}{\left(\mathrm{1}+\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)\left(\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)^{\mathrm{2}} } \\ $$$$\:\:\boldsymbol{{r}}\:=\frac{\boldsymbol{{a}}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{3}} }{\mathrm{2}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\:\approx\:\mathrm{0}.\mathrm{527}\boldsymbol{{a}}\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com