All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 41703 by abdo.msup.com last updated on 11/Aug/18
calculateI=∫0π4cosxcos3x+sin3xdx
Commented by math khazana by abdo last updated on 12/Aug/18
I=∫0π4cosxcos3xcos3x+sin3xcos3xdx=∫0π41cos2x(1+tan3x)dx=∫0π41+tan2x1+tan3xdx=tanx=t∫011+t21+t3dt1+t2=∫01dt1+t3letdecomposeF(t)=1t3+1=1(t+1)(t2−t+1)F(t)=at+1+bt+ct2−t+1a=limt→−1(t+1)F(t)=13limt→+∞tF(t)=0=a+b⇒b=−13⇒F(t)=13(t+1)+−13t+ct2−t+1F(0)=1=13+c⇒c=23⇒F(t)=13(t+1)−13t−2t2−t+1⇒∫01F(t)dt=13[ln∣t+1∣]01−13∫01t−2t2−t+1dt=ln(2)3−16∫012t−1−3t2−t+1dt=ln(2)3−[16ln∣t2−t+1∣]01+12∫01dtt2−t+1=ln(2)3+12∫01dt(t−12)2+34=t−12=32uln(2)3+1243∫−131311+u232du=ln(2)3+33[arctanu]−1313=ln(2)3+13{2arctan(13)}=ln(2)3+23π6⇒I=ln(2)3+π33.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com