Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41703 by abdo.msup.com last updated on 11/Aug/18

calculate  I = ∫_0 ^(π/4)    ((cosx)/(cos^3 x +sin^3 x))dx

calculateI=0π4cosxcos3x+sin3xdx

Commented by math khazana by abdo last updated on 12/Aug/18

I  = ∫_0 ^(π/4)   (((cosx)/(cos^3 x))/((cos^3 x +sin^3 x)/(cos^3 x))) dx =∫_0 ^(π/4)      (1/(cos^2 x(1+tan^3 x)))dx  =∫_0 ^(π/4) ((1+tan^2 x)/(1+tan^3 x)) dx =_(tanx=t)     ∫_0 ^1     ((1+t^2 )/(1+t^3 )) (dt/(1+t^2 ))  = ∫_0 ^1    (dt/(1+t^3 ))  let decompose   F(t)= (1/(t^3  +1)) =(1/((t+1)(t^2 −t +1)))  F(t)=(a/(t+1)) +((bt +c)/(t^2 −t +1))  a =lim_(t→−1) (t+1)F(t) =(1/3)  lim_(t→+∞) tF(t)=0=a +b ⇒b=−(1/3) ⇒  F(t) = (1/(3(t+1))) +((−(1/3)t +c)/(t^2 −t +1))  F(0) =1 =(1/3) +c ⇒c=(2/3) ⇒  F(t) = (1/(3(t+1))) −(1/3) ((t−2)/(t^2 −t +1)) ⇒  ∫_0 ^1 F(t)dt =(1/3)[ln∣t+1∣]_0 ^1   −(1/3) ∫_0 ^1   ((t−2)/(t^2 −t +1))dt  =((ln(2))/3) −(1/6) ∫_0 ^1  ((2t−1−3)/(t^2 −t +1)) dt  =((ln(2))/3) −[(1/6)ln∣t^2 −t+1∣ ]_0 ^1   +(1/2) ∫_0 ^1    (dt/(t^2 −t +1))  =((ln(2))/3) +(1/2) ∫_0 ^1     (dt/((t−(1/2))^2  +(3/4)))  =_(t−(1/2)=((√3)/2)u)    ((ln(2))/3) +(1/2) (4/3)  ∫_(−(1/(√3))) ^(1/(√3))     (1/(1+u^2 )) ((√3)/2) du  =((ln(2))/3)  + ((√3)/3) [ arctanu]_(−(1/(√3))) ^(1/(√3))   =((ln(2))/3) + (1/(√3)){ 2 arctan((1/(√3)))}  =((ln(2))/3) +(2/(√3)) (π/6) ⇒ I = ((ln(2))/3) +(π/(3(√3))) .

I=0π4cosxcos3xcos3x+sin3xcos3xdx=0π41cos2x(1+tan3x)dx=0π41+tan2x1+tan3xdx=tanx=t011+t21+t3dt1+t2=01dt1+t3letdecomposeF(t)=1t3+1=1(t+1)(t2t+1)F(t)=at+1+bt+ct2t+1a=limt1(t+1)F(t)=13limt+tF(t)=0=a+bb=13F(t)=13(t+1)+13t+ct2t+1F(0)=1=13+cc=23F(t)=13(t+1)13t2t2t+101F(t)dt=13[lnt+1]011301t2t2t+1dt=ln(2)316012t13t2t+1dt=ln(2)3[16lnt2t+1]01+1201dtt2t+1=ln(2)3+1201dt(t12)2+34=t12=32uln(2)3+1243131311+u232du=ln(2)3+33[arctanu]1313=ln(2)3+13{2arctan(13)}=ln(2)3+23π6I=ln(2)3+π33.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com