Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 41706 by abdo.msup.com last updated on 11/Aug/18

study the convergence of   u_n =Σ_(k=2) ^n   (1/(kln(k))) −ln(ln(n)

$${study}\:{the}\:{convergence}\:{of}\: \\ $$$${u}_{{n}} =\sum_{{k}=\mathrm{2}} ^{{n}} \:\:\frac{\mathrm{1}}{{kln}\left({k}\right)}\:−{ln}\left({ln}\left({n}\right)\right. \\ $$

Commented by math khazana by abdo last updated on 13/Aug/18

the function f(x) =(1/(xln(x))) is decreasing on  [2,+∞[  so      ∫_k ^(k+1) f(x)dx≤ f(k)≤ ∫_(k−1) ^k f(x)dx⇒  ∫_k ^(k+1)  (dx/(xln(x))) ≤ f(k)≤ ∫_(k−1) ^k  f(x)dx  but  ∫_k ^(k+1)   (dx/(xln(x))) =[ln(lnx)]_k ^(k+1) =ln(ln(k+1))−ln(ln(k))  ⇒ Σ_(k=3) ^n   ∫_k ^(k+1)   (dx/(xln(x)))=Σ_(k=3) ^n {ln(ln(k+1))−ln(ln(k))}  =ln(ln(n+1))−ln(ln(3)) also  Σ_(k=3) ^n  ∫_(k−1) ^k  (dx/(xln(x))) =∫_2 ^n    (dx/(xln(x))) =[ln(ln(x))]_2 ^n   ln(ln(n))−ln(ln(2)) ⇒  ln(ln(n+1))−ln(ln(3))≤ Σ_(k=3) ^n  f(k)  ≤  ln(ln(n))−ln(ln(2))⇒   ln(ln(n+1))−ln(ln(3)) +(1/(2ln(2))) −lnln(n)≤  u_n ≤−ln(ln(2)) +(1/(2ln(2))) ⇒  ln(((ln(n+1))/(ln(n))))−ln(ln(3))+(1/(2ln(2))) ≤ u_n ≤(1/(2ln(2)))−ln(ln(2))  so u_n  is convergente and   (1/(2ln(2))) −ln(ln(3))≤ lim_(n→+∞) u_n ≤ (1/(2ln(2))) −ln(ln2)

$${the}\:{function}\:{f}\left({x}\right)\:=\frac{\mathrm{1}}{{xln}\left({x}\right)}\:{is}\:{decreasing}\:{on} \\ $$$$\left[\mathrm{2},+\infty\left[\:\:{so}\:\:\:\:\:\:\int_{{k}} ^{{k}+\mathrm{1}} {f}\left({x}\right){dx}\leqslant\:{f}\left({k}\right)\leqslant\:\int_{{k}−\mathrm{1}} ^{{k}} {f}\left({x}\right){dx}\Rightarrow\right.\right. \\ $$$$\int_{{k}} ^{{k}+\mathrm{1}} \:\frac{{dx}}{{xln}\left({x}\right)}\:\leqslant\:{f}\left({k}\right)\leqslant\:\int_{{k}−\mathrm{1}} ^{{k}} \:{f}\left({x}\right){dx}\:\:{but} \\ $$$$\int_{{k}} ^{{k}+\mathrm{1}} \:\:\frac{{dx}}{{xln}\left({x}\right)}\:=\left[{ln}\left({lnx}\right)\right]_{{k}} ^{{k}+\mathrm{1}} ={ln}\left({ln}\left({k}+\mathrm{1}\right)\right)−{ln}\left({ln}\left({k}\right)\right) \\ $$$$\Rightarrow\:\sum_{{k}=\mathrm{3}} ^{{n}} \:\:\int_{{k}} ^{{k}+\mathrm{1}} \:\:\frac{{dx}}{{xln}\left({x}\right)}=\sum_{{k}=\mathrm{3}} ^{{n}} \left\{{ln}\left({ln}\left({k}+\mathrm{1}\right)\right)−{ln}\left({ln}\left({k}\right)\right)\right\} \\ $$$$={ln}\left({ln}\left({n}+\mathrm{1}\right)\right)−{ln}\left({ln}\left(\mathrm{3}\right)\right)\:{also} \\ $$$$\sum_{{k}=\mathrm{3}} ^{{n}} \:\int_{{k}−\mathrm{1}} ^{{k}} \:\frac{{dx}}{{xln}\left({x}\right)}\:=\int_{\mathrm{2}} ^{{n}} \:\:\:\frac{{dx}}{{xln}\left({x}\right)}\:=\left[{ln}\left({ln}\left({x}\right)\right)\right]_{\mathrm{2}} ^{{n}} \\ $$$${ln}\left({ln}\left({n}\right)\right)−{ln}\left({ln}\left(\mathrm{2}\right)\right)\:\Rightarrow \\ $$$${ln}\left({ln}\left({n}+\mathrm{1}\right)\right)−{ln}\left({ln}\left(\mathrm{3}\right)\right)\leqslant\:\sum_{{k}=\mathrm{3}} ^{{n}} \:{f}\left({k}\right) \\ $$$$\leqslant\:\:{ln}\left({ln}\left({n}\right)\right)−{ln}\left({ln}\left(\mathrm{2}\right)\right)\Rightarrow\: \\ $$$${ln}\left({ln}\left({n}+\mathrm{1}\right)\right)−{ln}\left({ln}\left(\mathrm{3}\right)\right)\:+\frac{\mathrm{1}}{\mathrm{2}{ln}\left(\mathrm{2}\right)}\:−{lnln}\left({n}\right)\leqslant \\ $$$${u}_{{n}} \leqslant−{ln}\left({ln}\left(\mathrm{2}\right)\right)\:+\frac{\mathrm{1}}{\mathrm{2}{ln}\left(\mathrm{2}\right)}\:\Rightarrow \\ $$$${ln}\left(\frac{{ln}\left({n}+\mathrm{1}\right)}{{ln}\left({n}\right)}\right)−{ln}\left({ln}\left(\mathrm{3}\right)\right)+\frac{\mathrm{1}}{\mathrm{2}{ln}\left(\mathrm{2}\right)}\:\leqslant\:{u}_{{n}} \leqslant\frac{\mathrm{1}}{\mathrm{2}{ln}\left(\mathrm{2}\right)}−{ln}\left({ln}\left(\mathrm{2}\right)\right) \\ $$$${so}\:{u}_{{n}} \:{is}\:{convergente}\:{and}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{ln}\left(\mathrm{2}\right)}\:−{ln}\left({ln}\left(\mathrm{3}\right)\right)\leqslant\:{lim}_{{n}\rightarrow+\infty} {u}_{{n}} \leqslant\:\frac{\mathrm{1}}{\mathrm{2}{ln}\left(\mathrm{2}\right)}\:−{ln}\left({ln}\mathrm{2}\right) \\ $$

Answered by alex041103 last updated on 12/Aug/18

We clearly see that (d/dk)((1/(kln(k))))<0  We apply the integral test:  u_∞ ≈lim_(n→∞) [∫_2 ^n (dk/(kln(k))) − ln(ln(n))]=  =lim_(n→∞) [∫_2 ^n ((d(ln(k)))/(ln(k))) − ln(ln(n))]=  =lim_(n→∞) [ln(ln(n))−ln(ln(2))−ln(ln(n))]  =−ln(ln(2))  As we know ln≡log_e  and e≈2.718  ⇒Since 1<2<e 0<ln(2)<1  Since ln(2)>0 then ln(ln(2)) exists.  ⇒u_n  converges

$${We}\:{clearly}\:{see}\:{that}\:\frac{{d}}{{dk}}\left(\frac{\mathrm{1}}{{kln}\left({k}\right)}\right)<\mathrm{0} \\ $$$${We}\:{apply}\:{the}\:{integral}\:{test}: \\ $$$${u}_{\infty} \approx\underset{{n}\rightarrow\infty} {{lim}}\left[\int_{\mathrm{2}} ^{{n}} \frac{{dk}}{{kln}\left({k}\right)}\:−\:{ln}\left({ln}\left({n}\right)\right)\right]= \\ $$$$=\underset{{n}\rightarrow\infty} {{lim}}\left[\int_{\mathrm{2}} ^{{n}} \frac{{d}\left({ln}\left({k}\right)\right)}{{ln}\left({k}\right)}\:−\:{ln}\left({ln}\left({n}\right)\right)\right]= \\ $$$$=\underset{{n}\rightarrow\infty} {{lim}}\left[{ln}\left({ln}\left({n}\right)\right)−{ln}\left({ln}\left(\mathrm{2}\right)\right)−{ln}\left({ln}\left({n}\right)\right)\right] \\ $$$$=−{ln}\left({ln}\left(\mathrm{2}\right)\right) \\ $$$${As}\:{we}\:{know}\:{ln}\equiv{log}_{{e}} \:{and}\:{e}\approx\mathrm{2}.\mathrm{718} \\ $$$$\Rightarrow{Since}\:\mathrm{1}<\mathrm{2}<{e}\:\mathrm{0}<{ln}\left(\mathrm{2}\right)<\mathrm{1} \\ $$$${Since}\:{ln}\left(\mathrm{2}\right)>\mathrm{0}\:{then}\:{ln}\left({ln}\left(\mathrm{2}\right)\right)\:{exists}. \\ $$$$\Rightarrow{u}_{{n}} \:{converges} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com