Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41806 by Raj Singh last updated on 13/Aug/18

Commented by prof Abdo imad last updated on 13/Aug/18

let A = ∫  ((arcsin(.(√x))−arccos((√x)))/(arcsin(√x) +arccos(√x))) dx  arcosx +arcsinx)^′ =−(1/(√(1−x^2 ))) +(1/(√(1−x^2 ))) for  −1<x<1 ⇒arcoss+arcsinx =c  c=(π/2) ⇒A = ∫ ((arcsin(√x)−((π/2)−arcsin(√x)))/(arcsin(√x)+(π/2) −arcsin(√x)))dx  =(2/π) ∫  (2arcsin(√x) −(π/2))dx  =(4/π) ∫  arcsin((√x))dx −x +c   but  ∫   arcsin((√x))dx =_((√x)=t)    ∫  2 arcsin(t)t dt  =2 ∫  t arcsin(t)dt   (by parts)  =2{  (t^2 /2) arcsint  −∫   (t^2 /(2(√(1−t^2 ))))dt}  =t^2  arcsint − ∫  (t^2 /(√(1−t^2 ))) dt but  ∫   (t^2 /(√(1−t^2 ))) dt =_(t=sinκ)     ∫    ((sin^2 α)/(cosα)) cosα dα  =∫    ((1−cos(2α))/2) dα =(1/2) α −(1/4)sin(2α)  =(1/2)α −(1/2) cosαsinα =(1/2) arcsint−(1/2)t(√(1−t^2 ))  =(1/2) arcsin((√x))−(1/2)(√x)(√(1−x))  ⇒  A =(4/π){x arcsin((√x))−(1/2)arcsin((√x))+(1/2)(√x)(√(1−x))}−x +c  A =(4/π){(x−(1/2))arcsin((√x)) +(((√x)(√(1−x)))/2)}−x +c .

letA=arcsin(.x)arccos(x)arcsinx+arccosxdxarcosx+arcsinx)=11x2+11x2for1<x<1arcoss+arcsinx=cc=π2A=arcsinx(π2arcsinx)arcsinx+π2arcsinxdx=2π(2arcsinxπ2)dx=4πarcsin(x)dxx+cbutarcsin(x)dx=x=t2arcsin(t)tdt=2tarcsin(t)dt(byparts)=2{t22arcsintt221t2dt}=t2arcsintt21t2dtbutt21t2dt=t=sinκsin2αcosαcosαdα=1cos(2α)2dα=12α14sin(2α)=12α12cosαsinα=12arcsint12t1t2=12arcsin(x)12x1xA=4π{xarcsin(x)12arcsin(x)+12x1x}x+cA=4π{(x12)arcsin(x)+x1x2}x+c.

Answered by tanmay.chaudhury50@gmail.com last updated on 13/Aug/18

x=sin^2 ∝  dx=2sin∝cos∝d∝  sin^(−1) (sin∝)+cos^(−1) (sin∝)  sin^(−1) (sin∝)+cos^(−1) {cos((Π/2)−∝)}  =(Π/2)  sin^(−1) (sin∝)−cos^(−1) (sin∝)  =2∝−(Π/2)  ∫(((2∝−(Π/2))sin2∝.d∝)/(Π/2))  (2/Π)[∫2∝sin2∝d∝−(Π/2)∫sin2∝ d∝]  (4/Π)∫∝sin2∝d∝−∫sin2∝d∝  (4/Π)[∝.(((−cos2∝)/2))−∫1.(((−cos2∝)/2))d∝]+((cos2∝)/2)+c  (4/Π)[∝.(((−cos2∝)/2))+((sin2∝)/4)]+((cos2∝)/2)+cc  cos2∝.(((−2∝)/Π)+(1/2))+sin2∝.(1/Π)+c  (((Π−4∝)/(2Π)))cos2∝+(1/Π)sin2∝+c  (((Π−4∝)/(2Π)))(cos^2 ∝−sin^2 ∝)+(1/Π)(2sin∝cos∝)+c  (((Π−4∝)/(2Π)))(1−x−x)+(1/Π)(2.(√x) .(√(1−x)) )+c  (((Π−4sin^(−1) (√x))/(2Π)))(1−2x)+(1/Π)(2(√x) .(√(1−x)) )+c  pls check

x=sin2dx=2sincosdsin1(sin)+cos1(sin)sin1(sin)+cos1{cos(Π2)}=Π2sin1(sin)cos1(sin)=2Π2(2Π2)sin2.dΠ22Π[2sin2dΠ2sin2d]4Πsin2dsin2d4Π[.(cos22)1.(cos22)d]+cos22+c4Π[.(cos22)+sin24]+cos22+cccos2.(2Π+12)+sin2.1Π+c(Π42Π)cos2+1Πsin2+c(Π42Π)(cos2sin2)+1Π(2sincos)+c(Π42Π)(1xx)+1Π(2.x.1x)+c(Π4sin1x2Π)(12x)+1Π(2x.1x)+cplscheck

Commented by tanmay.chaudhury50@gmail.com last updated on 13/Aug/18

i over looked the ∝ ...let me rectify...

ioverlookedthe...letmerectify...

Commented by tanmay.chaudhury50@gmail.com last updated on 13/Aug/18

rectified by red colour...

rectifiedbyredcolour...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com