Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41848 by maxmathsup by imad last updated on 13/Aug/18

let f(a) = ∫_0 ^(π/2)     (dx/(1+asinx))   with a∈R  1) find a simple form of f(a)  2) calculate ∫_0 ^(π/2)   (dx/(1+sinx)) and ∫_0 ^(π/2)    (dx/(1+2sinx))  3) find the value of  ∫_0 ^(π/2)   ((cosx)/((1+asinx)^2 ))dx  4) find the value of ∫_0 ^(π/2)    ((cosx)/((1+sinx)^2 ))dx and   ∫_0 ^(π/2)   ((cosx)/((1+2sinx)^2 ))dx

letf(a)=0π2dx1+asinxwithaR1)findasimpleformoff(a)2)calculate0π2dx1+sinxand0π2dx1+2sinx3)findthevalueof0π2cosx(1+asinx)2dx4)findthevalueof0π2cosx(1+sinx)2dxand0π2cosx(1+2sinx)2dx

Commented by maxmathsup by imad last updated on 14/Aug/18

1) changement tan((x/2))=t give  f(a) = ∫_0 ^1      (1/(1+a((2t)/(1+t^2 )))) ((2dt)/(1+t^2 )) = ∫_0 ^1    ((2dt)/(1+t^2  +2at)) =∫_0 ^1    ((2dt)/(t^2  +2at +1))  roots of t^2  +2at +1  Δ^′  =a^2 −1     case 1   a^2 >1 ⇒ ∣a∣>1  ⇒ t_1 =−a +(√(a^2  −1))  qnd t_2 =−a−(√(a^2 −1))  and  F(t) =(2/(t^2  +2at +1)) =(2/((t−t_1 )(t−t_2 ))) =(α/(t−t_1 )) +(β/(t−t_2 ))    α = (2/(t_1 −t_2 )) = (2/(2(√(a^2 −1)))) = (1/(√(a^2  −1)))  and β =(2/(t_2 −t_1 )) =−(1/(√(a^2 −1))) ⇒  F(t) =(1/(√(a^2 −1))){  (1/(t−t_1 )) −(1/(t−t_2 ))} ⇒f(a) =∫_0 ^1   (1/(√(a^2 −1))){  (1/(t−t_1 ))−(1/(t−t_2 ))}dt  = (1/(√(a^2 −1)))  [ln∣ ((t−t_1 )/(t−t_2 ))∣]_0 ^1  = (1/(√(a^2  −1))) { ln∣ ((1+a−(√(a^2 −1)))/(1+a+(√(a^2 −1))))∣−ln∣ ((a−(√(a^2 −1)))/(a+(√(a^2 −1))))∣}  case 2  a^2 <1 ⇒ −1<a<1  ⇒ no real roots ⇒  f(a) =∫_0 ^1      ((2dt)/(t^2  +2at +a^2  +1−a^2 )) = ∫_0 ^1   ((2dt)/((t+a)^2  +1−a^2 ))  changement  t+a =(√(1−a^2 ))u give f(a) = ∫_(a/(√(1−a^2 ))) ^((1+a)/(√(1−a^2 )))       ((2 (√(1−a^2 ))du)/((1−a^2 )(1+u^2 )))  = (2/(√(1−a^2 )))  { arctan(((1+a)/(√(1−a^2 ))))−arctan((a/(√(1−a^2 ))))}

1)changementtan(x2)=tgivef(a)=0111+a2t1+t22dt1+t2=012dt1+t2+2at=012dtt2+2at+1rootsoft2+2at+1Δ=a21case1a2>1a∣>1t1=a+a21qndt2=aa21andF(t)=2t2+2at+1=2(tt1)(tt2)=αtt1+βtt2α=2t1t2=22a21=1a21andβ=2t2t1=1a21F(t)=1a21{1tt11tt2}f(a)=011a21{1tt11tt2}dt=1a21[lntt1tt2]01=1a21{ln1+aa211+a+a21lnaa21a+a21}case2a2<11<a<1norealrootsf(a)=012dtt2+2at+a2+1a2=012dt(t+a)2+1a2changementt+a=1a2ugivef(a)=a1a21+a1a221a2du(1a2)(1+u2)=21a2{arctan(1+a1a2)arctan(a1a2)}

Commented by maxmathsup by imad last updated on 14/Aug/18

2)  ∫_0 ^(π/2)    (dx/(1+2sinx)) =f(2) = (1/(√3)){ ln∣ ((3−(√3))/(3+(√3)))∣ −ln∣ ((2−(√3))/(2+(√3)))∣}  =(1/(√3)){ ln(((3−(√3))/(3+(√3))))−ln(((2−(√3))/(2+(√3))))}  let calculate  ∫_0 ^(π/2)   (dx/(1+sinx))  ∫_0 ^(π/2)    (dx/(1+sinx)) =_(tan((x/2)) =u)   ∫_0 ^1       (1/(1+((2u)/(1+u^2 )))) ((2du)/(1+u^2 )) = ∫_0 ^1    ((2du)/(1+u^2  +2t))  = ∫_0 ^1    ((2du)/((u+1)^2 )) =[((−2)/(1+u))]_0 ^1  =−2((1/2) −1)= 1 .

2)0π2dx1+2sinx=f(2)=13{ln333+3ln232+3}=13{ln(333+3)ln(232+3)}letcalculate0π2dx1+sinx0π2dx1+sinx=tan(x2)=u0111+2u1+u22du1+u2=012du1+u2+2t=012du(u+1)2=[21+u]01=2(121)=1.

Commented by maxmathsup by imad last updated on 15/Aug/18

3) we have  f(a) = ∫_0 ^(π/2)     (dx/(1+a sinx)) ⇒f^′ (a) =−∫_0 ^(π/2)    ((sinx)/((1+asinx)^2 )) dx  ⇒ ∫_0 ^(π/2)    ((sinx)/((1+a sinx)^2 )) dx =−f^′ (a)  if −1<a<1  f(a) = (2/(√(1−a^2 ))){ arctan(((1+a)/(√(1−a^2 ))))−arctan((a/(√(1−a^2 )))) ⇒  f^′ (a) = 2 (−((−a)/(√(1−a^2 ))))×(1/((1−a^2 ))){ arctan(((1+a)/(√(1−a^2 ))))−arctan((a/(√(1−a^2 ))))}  +(2/(√(1−a^2 ))) {     (((((1+a)/(√(1−a^2 ))))^′ )/(1+(((1+a)/(√(1−a^2 ))))^2 )) −((((a/(√(1−a^2 ))))^′ )/(1+((a/(√(1−a^2 ))))^2 ))}  but  (((1+a)/(√(1−a^2 ))))^′   =(((√(1−a^2 )) −(1+a)(((−2a)/(2(√(1−a^2 ))))))/(1−a^2 )) = ((1−a^2  +a+a^2 )/((1−a^2 )(√(1−a^2 )))) =((1+a)/((1−a^2 )(√(1−a^2 ))))  ((a/(√(1−a^2 ))))^′  = (((√(1−a^2 ))  −a (((−a)/(√(1−a^2 )))))/((1−a^2 ))) =((1−a^2  +a^2 )/((1−a^2 )(√(1−a^2 )))) =(1/((1−a^2 )(√(1−a^2 )))) ⇒  f^′ (a) = ((2a)/((1−a^2 )(√(1−a^2 )))){ arctan(((1+a)/(√(1−a^2 )))) −arctan((a/(√(1−a^2 ))))}  +(2/(√(1−a^2 ))){     ((1+a)/((1−a^2 )(√(1−a^2 ))(1+(((1+a)^2 )/(1−a^2 ))))) −  (1/((1−a^2 )(√(1−a^2 ))(1+(a^2 /(1−a^2 )))))}  if ∣a∣>1 we follow the same way .

3)wehavef(a)=0π2dx1+asinxf(a)=0π2sinx(1+asinx)2dx0π2sinx(1+asinx)2dx=f(a)if1<a<1f(a)=21a2{arctan(1+a1a2)arctan(a1a2)f(a)=2(a1a2)×1(1a2){arctan(1+a1a2)arctan(a1a2)}+21a2{(1+a1a2)1+(1+a1a2)2(a1a2)1+(a1a2)2}but(1+a1a2)=1a2(1+a)(2a21a2)1a2=1a2+a+a2(1a2)1a2=1+a(1a2)1a2(a1a2)=1a2a(a1a2)(1a2)=1a2+a2(1a2)1a2=1(1a2)1a2f(a)=2a(1a2)1a2{arctan(1+a1a2)arctan(a1a2)}+21a2{1+a(1a2)1a2(1+(1+a)21a2)1(1a2)1a2(1+a21a2)}ifa∣>1wefollowthesameway.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com