Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41989 by Raj Singh last updated on 16/Aug/18

Commented by maxmathsup by imad last updated on 16/Aug/18

let  I  = ∫    (dx/((x^2  +2)^3 ))  changement x=(√2)tan(t) give  I  = ∫    (((√2)(1+tan^2 t))/(8(1+tan^2 t)^3 ))dt =((√2)/8)  ∫   cos^4 t dt  =((√2)/8) ∫   (((1+cos(2t))/2))^2 dt =((√2)/(32))  ∫   (1+2cos(2t) +cos^2 (2t))dt  =((√2)/(32)) t   +((√2)/(16)) ∫   cos(2t)dt   +((√2)/(64)) ∫   (1+cos(4t))dt  =((√2)/(32))t   +((√2)/(32)) sin(2t)  +((√2)/(64))t   +((√2)/(4×64)) sin(4t)  =((3(√2))/(32)) t  +((√2)/(32)) sin(2t)  +((√2)/(256)) sin(4t)  but   t =arctan((x/(√2)))  sin(2t) =((2tan(t))/(1+tan^2 t))  =((2(x/(√2)))/(1+((x/(√2)))^2 )) =((2x(√2))/(2+x^2 ))  sin(4t) =2sin(2t)cos(2t) =((4tan(t))/(1+tan^2 (t))) ((1−tan^2 (t))/(1+tan^2 t))  =((4(x/(√2))(1−((x/(√2)))^2 ))/((1+((x/(√2)))^2 )^2 )) = ((((4x)/(√2))(((2−x^2 )/2)))/((((2+x^2 )/2))^2 )) = 4 .(4/(2(√2))) ((2−x^2 )/((2+x^2 )^2 )) =(8/(√2)) ((2−x^2 )/((2+x^2 )^2 )) ⇒  I  =((3(√2))/(32)) arctan((x/(√2))) +((√2)/(32)) ((2x(√2))/(2+x^2 )) +((√2)/(256)) (8/(√2)) ((2−x^2 )/((2+x^2 )^2 )) +c .

letI=dx(x2+2)3changementx=2tan(t)giveI=2(1+tan2t)8(1+tan2t)3dt=28cos4tdt=28(1+cos(2t)2)2dt=232(1+2cos(2t)+cos2(2t))dt=232t+216cos(2t)dt+264(1+cos(4t))dt=232t+232sin(2t)+264t+24×64sin(4t)=3232t+232sin(2t)+2256sin(4t)butt=arctan(x2)sin(2t)=2tan(t)1+tan2t=2x21+(x2)2=2x22+x2sin(4t)=2sin(2t)cos(2t)=4tan(t)1+tan2(t)1tan2(t)1+tan2t=4x2(1(x2)2)(1+(x2)2)2=4x2(2x22)(2+x22)2=4.4222x2(2+x2)2=822x2(2+x2)2I=3232arctan(x2)+2322x22+x2+2256822x2(2+x2)2+c.

Answered by tanmay.chaudhury50@gmail.com last updated on 16/Aug/18

x=(√2) tanα  dx=(√2) sec^2 α dα  ∫(((√2) sec^2 αdα)/({2(tan^2 α +1)}^3 ))  (((√2) )/2^3 )∫((sec^2 α)/(sec^6 α))dα  (1/(4(√2)))∫cos^4 αdα  (1/(4(√2)))∫((1+cos2α)/2)×((1+cos2α)/2)dα  (1/(16(√2) ))∫1+2cos2α+((1+cos4α)/2) dα  (1/(16(√2) ))∫dα+(1/(8(√2) ))∫cos2α+(1/(32(√2)))∫dα+(1/(32(√2)))∫cos4αdα  =(1/(16(√2)))α+(1/(8(√2)))×((sin2α)/2)+(1/(32(√2)))α+(1/(32(√2)))×((sin4α)/4)+c  =(1/(32(√2) ))(2α+α)+(1/(16(√(2 ))))×((2tanα)/(1+tan^2 α))+(1/(128(√2)))×(2.((2tanα)/(1+tan^2 α)).((1−tan^2 α)/(1+tan^2 α)))  =(1/(32(√2)))×3tan^(−1) ((x/(√2)))+(1/(8(√2)))×((x/(√2))/(1+(x^2 /2)))+(1/(32(√2)))(((x/(√2))/(1+(x^2 /2))).((1−(x^2 /2))/(1+(x^2 /2))))  =(1/(32(√2)))×3tan^(−1) ((x/(√2)))+(1/(8(√2)))×(2/(√2))×(x/(2+x^2 ))+(1/(32(√2)))((√2) .(x/(2+x^2 )).((2−x^2 )/(2+x^2 )))  =(1/(32(√2)))×3tan^(−1) ((x/((√2) )))+(1/8).(x/(2+x^2 ))+(1/(32)){((x.(2−x^2 ))/((2+x^2 )^2 ))}  =(3/(32(√2)))tan^(−1) ((x/(√2)))+(1/8).(x/(2+x^2 )).(1+(1/4).((2−x^2 )/(2+x^2 )))  =((3(√2))/(64))tan^(−1) (((x(√2))/2))+(1/8).(x/(2+x^2 ))(((8+4x^2 +2−x^2 )/(8+4x^2 )))  =((3(√2))/(64))tan^(−1) (((x(√2))/2))+(1/8).(x/(2+x^2 )).(((10+3x^2 )/(8+4x^2 )))  ((3(√2))/(64))tan^(−1) (((x(√2))/2))+((x(10+3x^2 ))/((16+8x^2 )(8+4x^2 )))

x=2tanαdx=2sec2αdα2sec2αdα{2(tan2α+1)}3223sec2αsec6αdα142cos4αdα1421+cos2α2×1+cos2α2dα11621+2cos2α+1+cos4α2dα1162dα+182cos2α+1322dα+1322cos4αdα=1162α+182×sin2α2+1322α+1322×sin4α4+c=1322(2α+α)+1162×2tanα1+tan2α+11282×(2.2tanα1+tan2α.1tan2α1+tan2α)=1322×3tan1(x2)+182×x21+x22+1322(x21+x22.1x221+x22)=1322×3tan1(x2)+182×22×x2+x2+1322(2.x2+x2.2x22+x2)=1322×3tan1(x2)+18.x2+x2+132{x.(2x2)(2+x2)2}=3322tan1(x2)+18.x2+x2.(1+14.2x22+x2)=3264tan1(x22)+18.x2+x2(8+4x2+2x28+4x2)=3264tan1(x22)+18.x2+x2.(10+3x28+4x2)3264tan1(x22)+x(10+3x2)(16+8x2)(8+4x2)

Answered by MJS last updated on 16/Aug/18

reduction formula:  ∫(dx/((ax^2 +b)^n ))=(x/(2b(n−1)(ax^2 +b)^(n−1) ))+((2n−3)/(2b(n−1)))∫(dx/((ax^2 +b)^(n−1) ))  in this case  (1) a=1  b=2  n=3  (x/(8(x^2 +2)^2 ))+(3/8)∫(dx/((x^2 +2)^2 ))  (2) a=1  b=2  n=2  (x/(8(x^2 +2)^2 ))+((3x)/(32(x^2 +2)))+(3/(32))∫(dx/(x^2 +2))  ∫(dx/(x^2 +c))=((√c)/c)arctan ((x(√c))/c)  (x/(8(x^2 +2)^2 ))+((3x)/(32(x^2 +2)))+((3(√2))/(64))arctan ((x(√2))/2) +C  ((x(3x^2 +10))/(32(x^2 +2)^2 ))+((3(√2))/(64))arctan ((x(√2))/2) +C

reductionformula:dx(ax2+b)n=x2b(n1)(ax2+b)n1+2n32b(n1)dx(ax2+b)n1inthiscase(1)a=1b=2n=3x8(x2+2)2+38dx(x2+2)2(2)a=1b=2n=2x8(x2+2)2+3x32(x2+2)+332dxx2+2dxx2+c=ccarctanxccx8(x2+2)2+3x32(x2+2)+3264arctanx22+Cx(3x2+10)32(x2+2)2+3264arctanx22+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com