All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 42085 by maxmathsup by imad last updated on 17/Aug/18
calculate∫1+∞2x+13+(x+1)3dx
Commented by maxmathsup by imad last updated on 18/Aug/18
letA=∫1+∞2x+13+(x+1)3dxchangementx+1=tgiveA=∫2+∞2(t−1)+13+t3dt=∫2+∞2t−1t3+3dtalsochangement33u=tgiveA=∫233+∞2(33)u−13(1+u3)33duletα=2(33)=23(33)2∫α+∞uu3+1−33∫α+∞duu3+1=23(2α)2∫α+∞uu3+1du−2α∫α+∞duu3+1=∫α+∞83α2u−2αu3+1du=2α∫α+∞43αu−1u3+1du=23α2∫α+∞4u−3αu3+1duletdecomposeF(u)=4u−3αu3+1F(u)=4u−3α(u+1)(u2−u+1)=au+1+bu+cu2−u+1a=limu→−1(u+1)F(u)=−4−3α3limu→+∞uF(u)=0=a+b⇒b=4+3α3⇒F(u)=−3α+43(u+1)+13(3α+4)u+3cu2−u+1F(0)=−3α=−3α+43+c⇒c=−3α+3α+43=−6α+43⇒F(u)=−3α+43(u+1)+13(3α+4)u−6α+4u2−u+1⇒∫α+∞F(u)du=(−α−43)∫α+∞duu+1+3α+46∫α+∞2α−1+1u2−u+1du+4−6α3∫α+∞duu2−u+1=[(−α−43)ln∣u+1∣+3α+46ln(u2−u+1)]0+∞+4−6α3∫α+∞duu2−u+1...
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Aug/18
t=x+1dt=dx∫2∞2(t−1)+13+t3dt∫2∞2t+13+t3dt2t+1t3+(313)3=2t+1(t+313)(t2−313t+323)leta=3132t+1(t+a)(t2−ta+a2)=Pt+a+Qt+R(t2−ta+a2)2t+1=P(t2−ta+a2)+(t+a)(Qt+R)2t+1=t2(P)+t(−Pa)+(Pa2)+t2(Q)+t(R)+t(Qa)+aR2t+1=t2(P+Q)+t(−Pa+R+Qa)+(Pa2+aR)P+Q=0−Pa+Qa+R=2Pa2+aR=1Q=−P−Pa−Pa+1−Pa2a=2−2Pa2+1−Pa2=2a−3Pa2=2a−1P=1−2a3a2Q=2a−13a2R=1−Pa2a=1−1−2a3a=3−1+2a3a=2+2a3a∫2∞Pt+a+Qt+Rt2−ta+a2dtP∫2∞dtt+a+Q2∫2∞2t−a+at2−ta+a2+R∫2∞dtt2−2.t.a2+a24+3a24P∫2∞dtt+a+Q2∫2∞2t−at2−ta+a2dt+(Qa2+R)∫2∞dt(t−a2)2+(a32)2Pln∣(t+a)∣2∞+Q2ln∣(t2−ta+a2)∣2∞+(Qa2+R)×2a3∣tan−1(t−a2a32)∣2∞tobeclmpleted...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com