Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42085 by maxmathsup by imad last updated on 17/Aug/18

calculate    ∫_1 ^(+∞)    ((2x+1)/(3 +(x+1)^3 ))dx

calculate1+2x+13+(x+1)3dx

Commented by maxmathsup by imad last updated on 18/Aug/18

let  A  = ∫_1 ^(+∞)    ((2x+1)/(3+(x+1)^3 )) dx  changement  x+1 =t give  A  = ∫_2 ^(+∞)    ((2(t−1) +1)/(3 +t^3 )) dt = ∫_2 ^(+∞)    ((2t−1)/(t^3  +3)) dt  also changement^3 (√3)u =t give  A =  ∫_(2/3_(√3) ) ^(+∞)       ((2(^3 (√3))u−1)/(3(1+u^3 )))^3 (√3)du   let  α =(2/((^3 (√3))))  =  (2/3)  (^3 (√3))^2 ∫_α ^(+∞)    (u/(u^3  +1))  −^3 (√3)   ∫_α ^(+∞)     (du/(u^3  +1))  =(2/3)((2/α))^2    ∫_α ^(+∞)   (u/(u^3  +1))du  −(2/α)  ∫_α ^(+∞)   (du/(u^3  +1))  = ∫_α ^(+∞)    (((8/(3α^2 ))u −(2/α))/(u^3  +1)) du  =(2/α)  ∫_α ^(+∞)     (((4/(3α))u −1)/(u^3  +1)) du  = (2/(3α^2 )) ∫_α ^(+∞)    ((4u−3α)/(u^3  +1)) du   let decompose F(u) =((4u−3α)/(u^3  +1))  F(u) =((4u−3α)/((u+1)(u^2 −u+1))) = (a/(u+1))  +((bu +c)/(u^2 −u +1))  a =lim_(u→−1) (u+1)F(u)=((−4−3α)/3)  lim_(u→+∞)  u F(u) =0 =a+b ⇒ b =((4+3α)/3)  ⇒  F(u) =−((3α+4)/(3(u+1)))  +(1/3)  (((3α+4)u  +3c)/(u^2 −u +1))  F(0) =−3α  =−((3α+4)/3)  +c ⇒c =−3α +((3α+4)/3) =((−6α +4)/3)  ⇒  F(u) = −((3α+4)/(3(u+1)))  +(1/3) (((3α+4)u  −6α +4)/(u^2  −u +1))  ⇒  ∫_α ^(+∞) F(u)du  =(−α−(4/3)) ∫_α ^(+∞)   (du/(u+1))   +((3α+4)/6)  ∫_α ^(+∞)   ((2α−1+1)/(u^2 −u+1))du   +((4−6α)/3) ∫_α ^(+∞)    (du/(u^2 −u +1))  =[(−α−(4/3))ln∣u+1∣ +((3α+4)/6)ln(u^2 −u+1)]_0 ^(+∞)  +((4−6α)/3) ∫_α ^(+∞)   (du/(u^2  −u +1)) ...

letA=1+2x+13+(x+1)3dxchangementx+1=tgiveA=2+2(t1)+13+t3dt=2+2t1t3+3dtalsochangement33u=tgiveA=233+2(33)u13(1+u3)33duletα=2(33)=23(33)2α+uu3+133α+duu3+1=23(2α)2α+uu3+1du2αα+duu3+1=α+83α2u2αu3+1du=2αα+43αu1u3+1du=23α2α+4u3αu3+1duletdecomposeF(u)=4u3αu3+1F(u)=4u3α(u+1)(u2u+1)=au+1+bu+cu2u+1a=limu1(u+1)F(u)=43α3limu+uF(u)=0=a+bb=4+3α3F(u)=3α+43(u+1)+13(3α+4)u+3cu2u+1F(0)=3α=3α+43+cc=3α+3α+43=6α+43F(u)=3α+43(u+1)+13(3α+4)u6α+4u2u+1α+F(u)du=(α43)α+duu+1+3α+46α+2α1+1u2u+1du+46α3α+duu2u+1=[(α43)lnu+1+3α+46ln(u2u+1)]0++46α3α+duu2u+1...

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Aug/18

t=x+1   dt=dx  ∫_2 ^∞ ((2(t−1)+1)/(3+t^3 ))dt  ∫_2 ^∞ ((2t+1)/(3+t^3 ))dt  ((2t+1)/(t^3 +(3^(1/3) )^3 ))=((2t+1)/((t+3^(1/3) )(t^2 −3^(1/3) t+3^(2/3) )))  let a=3^(1/3)   ((2t+1)/((t+a)(t^2 −ta+a^2 )))=(P/(t+a))+((Qt+R)/((t^2 −ta+a^2 )))  2t+1=P(t^2 −ta+a^2 )+(t+a)(Qt+R)  2t+1=t^2 (P)+t(−Pa)+(Pa^2 )+t^2 (Q)+t(R)+t(Qa)+aR  2t+1=t^2 (P+Q)+t(−Pa+R+Qa)+(Pa^2 +aR)  P+Q=0  −Pa+Qa+R=2  Pa^2 +aR=1  Q=−P  −Pa−Pa+((1−Pa^2 )/a)=2  −2Pa^2 +1−Pa^2 =2a  −3Pa^2 =2a−1  P=((1−2a)/(3a^2 ))     Q=((2a−1)/(3a^2 ))  R=((1−Pa^2 )/a)=((1−((1−2a)/3))/a)=((3−1+2a)/(3a))=((2+2a)/(3a))  ∫_2 ^∞  (P/(t+a))+((Qt+R)/(t^2 −ta+a^2 ))  dt  P∫_2 ^∞ (dt/(t+a))+(Q/2)∫_2 ^∞ ((2t−a+a)/(t^2 −ta+a^2 ))+R∫_2 ^∞ (dt/(t^2 −2.t.(a/2)+(a^2 /4)+((3a^2 )/4)))  P∫_2 ^∞ (dt/(t+a))+(Q/2)∫_2 ^∞ ((2t−a)/(t^2 −ta+a^2 ))dt+(((Qa)/2)+R)∫_2 ^∞ (dt/((t−(a/2))^2 +(((a(√3))/2))^2 ))  Pln∣(t+a)∣_2 ^∞  +(Q/2)ln∣(t^2 −ta+a^2 )∣_2 ^∞ +(((Qa)/2)+R)×(2/(a(√3)))∣tan^(−1) (((t−(a/2))/((a(√3))/2)))∣_2 ^∞   to be clmpleted...

t=x+1dt=dx22(t1)+13+t3dt22t+13+t3dt2t+1t3+(313)3=2t+1(t+313)(t2313t+323)leta=3132t+1(t+a)(t2ta+a2)=Pt+a+Qt+R(t2ta+a2)2t+1=P(t2ta+a2)+(t+a)(Qt+R)2t+1=t2(P)+t(Pa)+(Pa2)+t2(Q)+t(R)+t(Qa)+aR2t+1=t2(P+Q)+t(Pa+R+Qa)+(Pa2+aR)P+Q=0Pa+Qa+R=2Pa2+aR=1Q=PPaPa+1Pa2a=22Pa2+1Pa2=2a3Pa2=2a1P=12a3a2Q=2a13a2R=1Pa2a=112a3a=31+2a3a=2+2a3a2Pt+a+Qt+Rt2ta+a2dtP2dtt+a+Q222ta+at2ta+a2+R2dtt22.t.a2+a24+3a24P2dtt+a+Q222tat2ta+a2dt+(Qa2+R)2dt(ta2)2+(a32)2Pln(t+a)2+Q2ln(t2ta+a2)2+(Qa2+R)×2a3tan1(ta2a32)2tobeclmpleted...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com