Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 42098 by abdo.msup.com last updated on 17/Aug/18

let S_(n,p) =Σ_(k=1) ^n   (1/(√(k+p)))  find a equivalent of S_(n,p)  when n→+∞  p integr ≥1.

$${let}\:{S}_{{n},{p}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\sqrt{{k}+{p}}} \\ $$$${find}\:{a}\:{equivalent}\:{of}\:{S}_{{n},{p}} \:{when}\:{n}\rightarrow+\infty \\ $$$${p}\:{integr}\:\geqslant\mathrm{1}. \\ $$

Commented by maxmathsup by imad last updated on 18/Aug/18

the sequence ((1/(√k)))_(k≥1)   is decreasing  ⇒  ∫_k ^(k+1)   (dt/(√(t+p))) ≤ (1/(√(k+p))) ≤ ∫_(k−1) ^k  (dt/(√(t+p))) ⇒  Σ_(k=1) ^n  ∫_k ^(k+1)  (dt/(√(t+p))) ≤Σ_(k=1) ^n    (1/(√(k+p))) ≤ Σ_(k=1) ^n  ∫_(k−1) ^k  (dt/(√(t+p))) ⇒  ∫_1 ^(n+1)   (dt/(√(t+p))) ≤ S_(n,p)    ≤ ∫_0 ^n   (dt/(√(t+p))) ⇒ [2(√(t+p))]_1 ^(n+1)  ≤S_(n,p)  ≤[2(√(t+p))]_0 ^n  ⇒  2(√(n+1+p)) −2(√(p+1)) ≤ S_(n,p)   ≤ 2(√(n+p))  −2(√(p )) ⇒  ((2(√(n+1+p))−2(√(p+1)))/(2(√(n+p)))) ≤   (S_(n,p) /(2(√(n+p)))) ≤  ((2(√(n+p)) −2(√p))/(2(√(n+p)))) ⇒  (√(1+(1/(n+p))))−(√((p+1)/(n+p)))  ≤  (S_(n,p) /(2(√(n+p)))) ≤  1−(√(p/(n+p)))   but  lim_(n→+∞ ) (√(1+(1/(n+p))))−(√((p+1)/(n+1))) =1 and lim_(n→+∞)  1−(√(p/(n+p))) =1 ⇒     S_(n,p)    ∼  2(√(n+p))    (n→+∞  and p fixed)

$${the}\:{sequence}\:\left(\frac{\mathrm{1}}{\sqrt{{k}}}\right)_{{k}\geqslant\mathrm{1}} \:\:{is}\:{decreasing}\:\:\Rightarrow\:\:\int_{{k}} ^{{k}+\mathrm{1}} \:\:\frac{{dt}}{\sqrt{{t}+{p}}}\:\leqslant\:\frac{\mathrm{1}}{\sqrt{{k}+{p}}}\:\leqslant\:\int_{{k}−\mathrm{1}} ^{{k}} \:\frac{{dt}}{\sqrt{{t}+{p}}}\:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:\int_{{k}} ^{{k}+\mathrm{1}} \:\frac{{dt}}{\sqrt{{t}+{p}}}\:\leqslant\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{\mathrm{1}}{\sqrt{{k}+{p}}}\:\leqslant\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\int_{{k}−\mathrm{1}} ^{{k}} \:\frac{{dt}}{\sqrt{{t}+{p}}}\:\Rightarrow \\ $$$$\int_{\mathrm{1}} ^{{n}+\mathrm{1}} \:\:\frac{{dt}}{\sqrt{{t}+{p}}}\:\leqslant\:{S}_{{n},{p}} \:\:\:\leqslant\:\int_{\mathrm{0}} ^{{n}} \:\:\frac{{dt}}{\sqrt{{t}+{p}}}\:\Rightarrow\:\left[\mathrm{2}\sqrt{{t}+{p}}\right]_{\mathrm{1}} ^{{n}+\mathrm{1}} \:\leqslant{S}_{{n},{p}} \:\leqslant\left[\mathrm{2}\sqrt{{t}+{p}}\right]_{\mathrm{0}} ^{{n}} \:\Rightarrow \\ $$$$\mathrm{2}\sqrt{{n}+\mathrm{1}+{p}}\:−\mathrm{2}\sqrt{{p}+\mathrm{1}}\:\leqslant\:{S}_{{n},{p}} \:\:\leqslant\:\mathrm{2}\sqrt{{n}+{p}}\:\:−\mathrm{2}\sqrt{{p}\:}\:\Rightarrow \\ $$$$\frac{\mathrm{2}\sqrt{{n}+\mathrm{1}+{p}}−\mathrm{2}\sqrt{{p}+\mathrm{1}}}{\mathrm{2}\sqrt{{n}+{p}}}\:\leqslant\:\:\:\frac{{S}_{{n},{p}} }{\mathrm{2}\sqrt{{n}+{p}}}\:\leqslant\:\:\frac{\mathrm{2}\sqrt{{n}+{p}}\:−\mathrm{2}\sqrt{{p}}}{\mathrm{2}\sqrt{{n}+{p}}}\:\Rightarrow \\ $$$$\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{n}+{p}}}−\sqrt{\frac{{p}+\mathrm{1}}{{n}+{p}}}\:\:\leqslant\:\:\frac{{S}_{{n},{p}} }{\mathrm{2}\sqrt{{n}+{p}}}\:\leqslant\:\:\mathrm{1}−\sqrt{\frac{{p}}{{n}+{p}}}\:\:\:{but} \\ $$$${lim}_{{n}\rightarrow+\infty\:} \sqrt{\mathrm{1}+\frac{\mathrm{1}}{{n}+{p}}}−\sqrt{\frac{{p}+\mathrm{1}}{{n}+\mathrm{1}}}\:=\mathrm{1}\:{and}\:{lim}_{{n}\rightarrow+\infty} \:\mathrm{1}−\sqrt{\frac{{p}}{{n}+{p}}}\:=\mathrm{1}\:\Rightarrow \\ $$$$\:\:\:{S}_{{n},{p}} \:\:\:\sim\:\:\mathrm{2}\sqrt{{n}+{p}}\:\:\:\:\left({n}\rightarrow+\infty\:\:{and}\:{p}\:{fixed}\right)\: \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com