Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42191 by maxmathsup by imad last updated on 19/Aug/18

let A_p =∫_0 ^∞   ((sin(px))/(e^x −1)) dx  with p>0  1)give A_p   at form of serie  2) give A_1  at form of serie .

$${let}\:{A}_{{p}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({px}\right)}{{e}^{{x}} −\mathrm{1}}\:{dx}\:\:{with}\:{p}>\mathrm{0} \\ $$ $$\left.\mathrm{1}\right){give}\:{A}_{{p}} \:\:{at}\:{form}\:{of}\:{serie} \\ $$ $$\left.\mathrm{2}\right)\:{give}\:{A}_{\mathrm{1}} \:{at}\:{form}\:{of}\:{serie}\:. \\ $$

Commented bymaxmathsup by imad last updated on 20/Aug/18

1) we have A_p =∫_0 ^∞   ((e^(−x)  sin(px))/(1−e^(−x) )) dx =∫_0 ^∞  (Σ_(n=0) ^∞  e^(−nx) )e^(−x) sin(px))dx  =Σ_(n=0) ^∞     ∫_0 ^∞   e^(−(n+1)x) sin(px) dx =_((n+1)x =t)  Σ_(n=0) ^∞    ∫_0 ^∞   e^(−t) sin(p(t/(n+1)))(dt/(n+1))  = Σ_(n=0) ^∞  (1/(n+1)) ∫_0 ^∞    e^(−t)   sin((p/(n+1))t)dt  let calculate  I_λ =∫_0 ^∞   e^(−t)  sin(λt) dt ⇒I_λ = Im(∫_0 ^∞   e^(−t+iλt) dt)  but  ∫_0 ^∞   e^((−1+iλ)t) dt =[ (1/(−1+iλ)) e^((−1+iλ)t) ]_0 ^∞  =−(1/(−1+iλ)) =(1/(1−iλ))  =((1+iλ)/(1+λ^2 )) ⇒ I_λ =(λ/(1+λ^2 )) ⇒ A_p =Σ_(n=0) ^∞  (1/(n+1))(((p/(n+1))/(1+((p/(n+1)))^2 )))  = Σ_(n=0) ^∞   (1/(n+1))((p/(n+1))(((n+1)^2 )/((n+1)^2  +p^2 )))= Σ_(n=0) ^∞     (p/((n+1)^2  +p^2 )) ⇒  A_p =Σ_(n=0) ^∞    (p/((n+1)^2  +p^2 ))  2)  A_1 =Σ_(n=0) ^∞     (1/((n+1)^2  +1)) = Σ_(n=1) ^∞    (1/(n^2  +1))  .

$$\left.\mathrm{1}\left.\right)\:{we}\:{have}\:{A}_{{p}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}} \:{sin}\left({px}\right)}{\mathrm{1}−{e}^{−{x}} }\:{dx}\:=\int_{\mathrm{0}} ^{\infty} \:\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{nx}} \right){e}^{−{x}} {sin}\left({px}\right)\right){dx} \\ $$ $$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({n}+\mathrm{1}\right){x}} {sin}\left({px}\right)\:{dx}\:=_{\left({n}+\mathrm{1}\right){x}\:={t}} \:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{t}} {sin}\left({p}\frac{{t}}{{n}+\mathrm{1}}\right)\frac{{dt}}{{n}+\mathrm{1}} \\ $$ $$=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{n}+\mathrm{1}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−{t}} \:\:{sin}\left(\frac{{p}}{{n}+\mathrm{1}}{t}\right){dt}\:\:{let}\:{calculate} \\ $$ $${I}_{\lambda} =\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{t}} \:{sin}\left(\lambda{t}\right)\:{dt}\:\Rightarrow{I}_{\lambda} =\:{Im}\left(\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{t}+{i}\lambda{t}} {dt}\right)\:\:{but} \\ $$ $$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{\left(−\mathrm{1}+{i}\lambda\right){t}} {dt}\:=\left[\:\frac{\mathrm{1}}{−\mathrm{1}+{i}\lambda}\:{e}^{\left(−\mathrm{1}+{i}\lambda\right){t}} \right]_{\mathrm{0}} ^{\infty} \:=−\frac{\mathrm{1}}{−\mathrm{1}+{i}\lambda}\:=\frac{\mathrm{1}}{\mathrm{1}−{i}\lambda} \\ $$ $$=\frac{\mathrm{1}+{i}\lambda}{\mathrm{1}+\lambda^{\mathrm{2}} }\:\Rightarrow\:{I}_{\lambda} =\frac{\lambda}{\mathrm{1}+\lambda^{\mathrm{2}} }\:\Rightarrow\:{A}_{{p}} =\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{n}+\mathrm{1}}\left(\frac{\frac{{p}}{{n}+\mathrm{1}}}{\mathrm{1}+\left(\frac{{p}}{{n}+\mathrm{1}}\right)^{\mathrm{2}} }\right) \\ $$ $$=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}+\mathrm{1}}\left(\frac{{p}}{{n}+\mathrm{1}}\frac{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }{\left({n}+\mathrm{1}\right)^{\mathrm{2}} \:+{p}^{\mathrm{2}} }\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{{p}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} \:+{p}^{\mathrm{2}} }\:\Rightarrow \\ $$ $${A}_{{p}} =\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{p}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} \:+{p}^{\mathrm{2}} } \\ $$ $$\left.\mathrm{2}\right)\:\:{A}_{\mathrm{1}} =\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} \:+\mathrm{1}}\:=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:+\mathrm{1}}\:\:. \\ $$ $$ \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com