Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 4230 by prakash jain last updated on 03/Jan/16

Solve for +ve integers >0.  x^2 +y^4 =z^6

Solvefor+veintegers>0. x2+y4=z6

Commented byRasheed Soomro last updated on 04/Jan/16

x^2 +(y^2 )^2 =(z^3 )^2   A special type pathagorean triplet in  which first/second member is perfect square  and third member is perfect cube.  75,100,125  75^2 +100^2 =125^2   75^2 +10^4 =5^6

x2+(y2)2=(z3)2 Aspecialtypepathagoreantripletin whichfirst/secondmemberisperfectsquare andthirdmemberisperfectcube. 75,100,125 752+1002=1252 752+104=56

Answered by Rasheed Soomro last updated on 05/Jan/16

x^2 +(y^2 )^2 =(z^3 )^2   (x,y^2 ,z^3 ) is Pythagorean triplet.  A special type Pythagorean triplet  whose one of the first two members  is perfect square and third member  is perfect cube.  −−−−−−−−−−−−−−−−−−  For all m,n∈Z^+  ∧ m>n  (m^2 −n^2  , 2mn, m^2 +n^2 ) is a Pythagorean  triplet.  −−−−−−−−−−−−−−−−−−−−−  Trying  2mn to be perfect square  I let m=2n  (We also can let m=8n this will led  an  other solution. Or m=2^(2k−1) n)  (  (2n)^2 −n^2  , 4n^2  , (2n)^2 +n^2    )=(3n^2  ,4n^2  , 5n^2  )  Trying 5n^2   to be perfect cube I guessed n=5 ∗  m=2n=2(5)=10  So   (m^2 −n^2  , 2mn, m^2 +n^2 )          =(10^2 −5^2  , 2(10)(5) , 10^2 +5^2 )          =(75 , 100,125)  ∴   75^2 +100^2 =125^2   Or 75^2 +(10^2 )^2 =(5^3 )^2          75^2 +10^4 =5^6   ∗An other guess for 5n^2   to be perfect cube  5n^2 =5.5^2 .4^3 ⇒n=5.2^3 =40  m=2n=2(40)=80  (m^2 −n^2  , 2mn, m^2 +n^2 )  =(80^2 −40^2  , 2(80)(40) , 80^2 +40^2  )  =(6400−1600 , 6400 , 6400+1600)  =(4800,6400,8000)  ∴ 4800^2 +6400^2 =8000^2        4800^2 +(80^2 )^2 =(20^3 )^2       4800^2 +80^4 =20^6

x2+(y2)2=(z3)2 (x,y2,z3)isPythagoreantriplet. AspecialtypePythagoreantriplet whoseoneofthefirsttwomembers isperfectsquareandthirdmember isperfectcube. Forallm,nZ+m>n (m2n2,2mn,m2+n2)isaPythagorean triplet. Trying2mntobeperfectsquare Iletm=2n (Wealsocanletm=8nthiswillledan othersolution.Orm=22k1n) ((2n)2n2,4n2,(2n)2+n2)=(3n2,4n2,5n2) Trying5n2tobeperfectcubeIguessedn=5 m=2n=2(5)=10 So(m2n2,2mn,m2+n2) =(10252,2(10)(5),102+52) =(75,100,125) 752+1002=1252 Or752+(102)2=(53)2 752+104=56 Anotherguessfor5n2tobeperfectcube 5n2=5.52.43n=5.23=40 m=2n=2(40)=80 (m2n2,2mn,m2+n2) =(802402,2(80)(40),802+402) =(64001600,6400,6400+1600) =(4800,6400,8000) 48002+64002=80002 48002+(802)2=(203)2 48002+804=206

Answered by Rasheed Soomro last updated on 05/Jan/16

General Solution  x^2 +(y)^2 =(z^3 )^2   (x,y^2 ,z^3 ) is Pythagorean triplet.  −−−−−−−−−−−−−−−−  For m>n and m,n∈N one general  Pythagorean triplet is  (m^2 −n^2 ,2mn,m^2 +n^2 )  −−−−−−−−−−−−−−−−−  To make 2mn perfect square  Let m=2^(2k−1) n  2mn=2(2^(2k−1) n)n=2^(2k) n^2   m^2 +n^2 =(2^(2k−1) n)^2 +n^2 =(2^(4k−2) +1)n^2   In order to make m^2 +n^2  perfect cube  Let n=2^(4k−2) +1  ∴ m=2^(2k−1) n=2^(2k−1) ×(2^(4k−2) +1)=2^(6k−3) +2^(2k−1)   −−−−−−−  m^2 −n^2 =(2^(6k−3) +2^(2k−1) )^2 −(2^(4k−2) +1)^2         =2^(12k−6) +2^(4k−2) +2^(8k−3) −2^(8k−4) −1−2^(4k−1)   2mn=2^(2k) (2^(4k−2) +1)^2 ={2^k (2^(4k−2) +1)}^2   m^2 +n^2 =(2^(4k−2) +1)^3       {(2^(6k−3) +2^(2k−1) )^2 −(2^(4k−2) +1)^2 }^2 +{ 2^k (2^(4k−2) +1)}^4                                                             =(2^(4k−2) +1)^6    ∀ k∈N  (x,y,z)=((2^(6k−3) +2^(2k−1) )^2 −(2^(4k−2) +1)^2  , 2^k (2^(4k−2) +1),2^(4k−2) +1)  For k=1  75^2 +10^4 =5^6

GeneralSolution x2+(y)2=(z3)2 (x,y2,z3)isPythagoreantriplet. Form>nandm,nNonegeneral Pythagoreantripletis (m2n2,2mn,m2+n2) Tomake2mnperfectsquare Letm=22k1n 2mn=2(22k1n)n=22kn2 m2+n2=(22k1n)2+n2=(24k2+1)n2 Inordertomakem2+n2perfectcube Letn=24k2+1 m=22k1n=22k1×(24k2+1)=26k3+22k1 m2n2=(26k3+22k1)2(24k2+1)2 =212k6+24k2+28k328k4124k1 2mn=22k(24k2+1)2={2k(24k2+1)}2 m2+n2=(24k2+1)3 {(26k3+22k1)2(24k2+1)2}2+{2k(24k2+1)}4 =(24k2+1)6kN (x,y,z)=((26k3+22k1)2(24k2+1)2,2k(24k2+1),24k2+1) Fork=1752+104=56

Commented byprakash jain last updated on 05/Jan/16

A good formula.  An observation for specific case:  75^2 +10^4 =5^6   5^4 ∙3^2 +5^4 .2^4 =5^4 ∙5^2   So if x^2 +y^2 =z^2  and y is a perfect square say u^2   then we can get solution for x^2 +y^4 =z^6   by multiplying x,y,z by z^4 .

Agoodformula. Anobservationforspecificcase: 752+104=56 5432+54.24=5452 Soifx2+y2=z2andyisaperfectsquaresayu2 thenwecangetsolutionforx2+y4=z6 bymultiplyingx,y,zbyz4.

Commented byRasheed Soomro last updated on 06/Jan/16

G^(OO) D Technique!  T HαnkS!

GOODTechnique!THαnkS!

Commented byRasheed Soomro last updated on 08/Jan/16

Pythagorean Triple                  ▽   Triple satisfying x^2 +y^4 =z^6   Your technique applying  twice  x^2 +y^2 =z^2   x^2 y^2 +y^2 y^2 =z^2 y^2   (xy)^2 +y^4 =(zy)^2   (xy)^2 (zy)^4 +y^4 (zy)^4 =(zy)^2 (zy)^4   (xy^3 z^2 )^2 +(y^2 z)^4 =(zy)^6   (x,y,z) is Pythagorean triplet        ⇒(xy^3 z^2  , y^2 z , zy) is tripletfor x^2 +y^4 =z^6 .  (3,4,5)⇒( 3(4)^3 (5)^2 , (4)^2 (5),(5)(4) )                =(  3(64)(25),16(5),20  )=(4800,80,20)   (4,3,5)⇒( 4(3)^3 (5)^2 ,(3)^2 (5),(3)(5) )=(2700,45,15)

PythagoreanTriple Triplesatisfyingx2+y4=z6 Yourtechniqueapplyingtwice x2+y2=z2 x2y2+y2y2=z2y2 (xy)2+y4=(zy)2 (xy)2(zy)4+y4(zy)4=(zy)2(zy)4 (xy3z2)2+(y2z)4=(zy)6 (x,y,z)isPythagoreantriplet (xy3z2,y2z,zy)istripletforx2+y4=z6. (3,4,5)(3(4)3(5)2,(4)2(5),(5)(4)) =(3(64)(25),16(5),20)=(4800,80,20) (4,3,5)(4(3)3(5)2,(3)2(5),(3)(5))=(2700,45,15)

Commented byRasheed Soomro last updated on 07/Jan/16

(x,y,z) is Pythagorean triplet             ⇒(xy^3 z^2  , y^2 z , zy) is required triplet.  Let  x,y,z are m^2 −n^2 ,2mn , m^2 +n^2  type.  xy^3 z^2 =(m^2 −n^2 )(2mn)^3 (m^2 +n^2 )^2   y^2 z=(2mn)^2 (m^2 +n^2 )  yz=(2mn)(m^2 +n^2 )  General Triplet for x^2 +y^4 =z^6 :  ((((m^2 −n^2 )(2mn)^3 (m^2 +n^2 )^2 ,)/)(((2mn)^2 (m^2 +n^2 ),)/)(((2mn)(m^2 +n^2 ))/))  Or  ((((m^2 −n^2 )^3 (2mn)(m^2 +n^2 )^2 ,)/)(((m^2 −n^2 )^2 (m^2 +n^2 ),)/)(((m^2 −n^2 )(m^2 +n^2 ))/))  ∀ m,n∈N  with m>n

(x,y,z)isPythagoreantriplet (xy3z2,y2z,zy)isrequiredtriplet. Letx,y,zarem2n2,2mn,m2+n2type. xy3z2=(m2n2)(2mn)3(m2+n2)2 y2z=(2mn)2(m2+n2) yz=(2mn)(m2+n2) GeneralTripletforx2+y4=z6: ((m2n2)(2mn)3(m2+n2)2,(2mn)2(m2+n2),(2mn)(m2+n2)) Or ((m2n2)3(2mn)(m2+n2)2,(m2n2)2(m2+n2),(m2n2)(m2+n2)) m,nNwithm>n

Terms of Service

Privacy Policy

Contact: info@tinkutara.com