Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 42310 by ajfour last updated on 23/Aug/18

Commented by ajfour last updated on 23/Aug/18

Solution to Q.41766 (Another method)

$${Solution}\:{to}\:{Q}.\mathrm{41766}\:\left({Another}\:{method}\right) \\ $$

Answered by ajfour last updated on 23/Aug/18

cos α = (a/(2R)) ;  cos β = (b/(2R))                θ=((α+β)/2)  eq. of bigger circle :       x^2 +y^2 =R^( 2)       ...(i)  eq. of small circle :       (x−h)^2 +(y−k)^2 =r^2     ...(ii)  with    h^2 +k^2 =(R−r)^2      ...(iii)     but   h=(r/(sin θ)) cos (β−θ)−R  and    k =− (r/(sin θ)) sin (β−θ)  substituting these in (iii) we have    (r^2 /(sin^2 θ))−((2rR)/(sin θ)) cos (β−θ)=r^2 −2rR  ⇒   r=0  or     r = ((2R[((cos (β−θ))/(sin θ))−1])/((1/(sin^2 θ))−1))  but   θ= ((α+β)/2)   , hence  r = 2R[((cos (((β−α)/2)))/(cos (((β+α)/2))))−tan (((β+α)/2))]tan (((β+α)/2)) ;  with  β = cos^(−1) (b/(2R))  & α=cos^(−1) (a/(2R)) .

$$\mathrm{cos}\:\alpha\:=\:\frac{{a}}{\mathrm{2}{R}}\:;\:\:\mathrm{cos}\:\beta\:=\:\frac{{b}}{\mathrm{2}{R}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\theta=\frac{\alpha+\beta}{\mathrm{2}} \\ $$$${eq}.\:{of}\:{bigger}\:{circle}\:: \\ $$$$\:\:\:\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={R}^{\:\mathrm{2}} \:\:\:\:\:\:...\left({i}\right) \\ $$$${eq}.\:{of}\:{small}\:{circle}\:: \\ $$$$\:\:\:\:\:\left({x}−{h}\right)^{\mathrm{2}} +\left({y}−{k}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \:\:\:\:...\left({ii}\right) \\ $$$${with}\:\:\:\:\boldsymbol{{h}}^{\mathrm{2}} +\boldsymbol{{k}}^{\mathrm{2}} =\left(\boldsymbol{{R}}−\boldsymbol{{r}}\right)^{\mathrm{2}} \:\:\:\:\:...\left({iii}\right) \\ $$$$\:\:\:{but}\:\:\:\boldsymbol{{h}}=\frac{\boldsymbol{{r}}}{\mathrm{sin}\:\theta}\:\mathrm{cos}\:\left(\beta−\theta\right)−{R} \\ $$$${and}\:\:\:\:\boldsymbol{{k}}\:=−\:\frac{\boldsymbol{{r}}}{\mathrm{sin}\:\theta}\:\mathrm{sin}\:\left(\beta−\theta\right) \\ $$$${substituting}\:{these}\:{in}\:\left({iii}\right)\:{we}\:{have} \\ $$$$\:\:\frac{{r}^{\mathrm{2}} }{\mathrm{sin}\:^{\mathrm{2}} \theta}−\frac{\mathrm{2}{rR}}{\mathrm{sin}\:\theta}\:\mathrm{cos}\:\left(\beta−\theta\right)={r}^{\mathrm{2}} −\mathrm{2}{rR} \\ $$$$\Rightarrow\:\:\:{r}=\mathrm{0}\:\:{or} \\ $$$$\:\:\:\boldsymbol{{r}}\:=\:\frac{\mathrm{2}{R}\left[\frac{\mathrm{cos}\:\left(\beta−\theta\right)}{\mathrm{sin}\:\theta}−\mathrm{1}\right]}{\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{2}} \theta}−\mathrm{1}} \\ $$$${but}\:\:\:\theta=\:\frac{\alpha+\beta}{\mathrm{2}}\:\:\:,\:{hence} \\ $$$$\boldsymbol{{r}}\:=\:\mathrm{2}\boldsymbol{{R}}\left[\frac{\mathrm{cos}\:\left(\frac{\beta−\alpha}{\mathrm{2}}\right)}{\mathrm{cos}\:\left(\frac{\beta+\alpha}{\mathrm{2}}\right)}−\mathrm{tan}\:\left(\frac{\beta+\alpha}{\mathrm{2}}\right)\right]\mathrm{tan}\:\left(\frac{\beta+\alpha}{\mathrm{2}}\right)\:; \\ $$$${with}\:\:\beta\:=\:\mathrm{cos}^{−\mathrm{1}} \frac{{b}}{\mathrm{2}{R}}\:\:\&\:\alpha=\mathrm{cos}^{−\mathrm{1}} \frac{{a}}{\mathrm{2}{R}}\:. \\ $$

Commented by MrW3 last updated on 24/Aug/18

very nice! the answer is correct.

$${very}\:{nice}!\:{the}\:{answer}\:{is}\:{correct}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com