All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 42370 by Raj Singh last updated on 24/Aug/18
Commented by maxmathsup by imad last updated on 24/Aug/18
letA=∫dxsin(2x)+sinxA=∫dx2sinxcosx+sinx=∫sinx2sin2xcosx+sin2xdx=∫sinx2(1−cos2x)cosx+1−cos2x=∫sinx2cosx−2cos3x+1−cos2xdx=∫sinxdx−2cos3x−cos2x+2cosx+1=cosx=t∫−dt−2t3−t2+2t+1=∫dt2t3+t2−2t−1but2t3+t2−2t−1=2t3−2+t2−2t+1=2(t−1)(t2+t+1)+(t−1)2=(t−1)(2t2+2t+2+t−1)=(t−1)(2t2+3t+1)rootsof2t2+3t+1Δ=9−8=1⇒t1=−3+14=−12andt2=−3−14=−1⇒2t3+t2−2t−1=(t−1)(t+1)(t+12)letdecomposeF(t)=12t3+t2−2t−1=1(t−1)(t+1)(t+12)F(t)=at−1+bt+1+ct+12a=limt→1(t−1)F(t)=12.32=13b=limt→−1(t+1)F(t)=1(−2)(−12)=1c=limt→−12(t+12)F(t)=1(−32)12=−43⇒F(t)=13(t−1)+1t+1−43(t+12)⇒A=∫F(t)dt=13ln∣t−1∣+ln∣t+1∣−43ln∣t+12∣+cA=13ln∣cosx−1∣+ln∣cosx+1∣−43ln∣cosx+12∣+c
Answered by tanmay.chaudhury50@gmail.com last updated on 24/Aug/18
∫dxsinx(2cosx+1)∫sinxdx(1−cos2x)(2cosx+1)t=cosxdt=−sinxdx∫−dt(1−t2)(2t+1)∫dt(t+1)(t−1)(2t+1)1(t+1)(t−1)(2t+1)=at+1+bt−1+c2t+11=a(t−1)(2t+1)+b(t+1)(2t+1)+c(t+1)(t−1)putt−1=0t=1b(1+1)(2+1)=1b=16putt+1=0a(−1−1)(2×−1+1)=1a(−2)(−1)=1a=12put2t+1=0c(−12+1)(−12−1)=1c(14−1)=1c×−34=1c=−43∫at+1dt+∫bt−1dt+∫c2t+1dta∫dtt+1+b∫dtt−1+c2∫dtt+12aln(t+1)+bln(t−1)+c2ln(t+12)12ln(cosx+1)+16ln(cosx−1)+−42×3ln(cosx+12)+k
Terms of Service
Privacy Policy
Contact: info@tinkutara.com