Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42370 by Raj Singh last updated on 24/Aug/18

Commented by maxmathsup by imad last updated on 24/Aug/18

let A = ∫   (dx/(sin(2x)+sinx))  A = ∫     (dx/(2sinx cosx +sinx)) = ∫      ((sinx)/(2sin^2 xcosx +sin^2 x)) dx  = ∫        ((sinx)/(2(1−cos^2 x)cosx +1−cos^2 x)) = ∫    ((sinx)/(2cosx −2cos^3 x +1−cos^2 x))dx  = ∫         ((sinx dx)/(−2cos^3 x −cos^2 x +2cosx +1)) =_(cosx =t)     ∫        ((−dt)/(−2t^3 −t^2  +2t +1))  = ∫      (dt/(2t^3  +t^2  −2t−1))  but  2t^3  +t^2 −2t −1 = 2t^3 −2 +t^2  −2t +1  =2(t−1)(t^2  +t+1) +(t−1)^2  =(t−1)(2t^2  +2t +2 +t−1)  =(t−1)(2t^2   +3t +1)  roots of  2t^2  +3t +1   Δ =9−8 =1 ⇒t_1 =((−3+1)/4) =−(1/2)  and t_2 =((−3−1)/4) =−1 ⇒  2t^3  +t^2  −2t−1 =(t−1)(t+1)(t+(1/2)) let decompose  F(t) =(1/(2t^3  +t^2 −2t −1)) =(1/((t−1)(t+1)(t+(1/2))))  F(t) =(a/(t−1)) +(b/(t+1)) +(c/(t+(1/2)))  a =lim_(t→1) (t−1)F(t) = (1/(2.(3/2))) =(1/3)  b =lim_(t→−1) (t+1)F(t) = (1/((−2)(−(1/2)))) =1  c =lim_(t→−(1/2)) (t+(1/2))F(t) = (1/((−(3/2))(1/2))) =−(4/3) ⇒  F(t) = (1/(3(t−1))) +(1/(t+1))   −(4/(3(t+(1/2)))) ⇒  A  = ∫  F(t)dt  =(1/3)ln∣t−1∣ +ln∣t+1∣ −(4/3)ln∣t +(1/2)∣ +c  A =(1/3)ln∣cosx−1∣ +ln∣cosx +1∣ −(4/3)ln∣cosx +(1/2)∣ +c

letA=dxsin(2x)+sinxA=dx2sinxcosx+sinx=sinx2sin2xcosx+sin2xdx=sinx2(1cos2x)cosx+1cos2x=sinx2cosx2cos3x+1cos2xdx=sinxdx2cos3xcos2x+2cosx+1=cosx=tdt2t3t2+2t+1=dt2t3+t22t1but2t3+t22t1=2t32+t22t+1=2(t1)(t2+t+1)+(t1)2=(t1)(2t2+2t+2+t1)=(t1)(2t2+3t+1)rootsof2t2+3t+1Δ=98=1t1=3+14=12andt2=314=12t3+t22t1=(t1)(t+1)(t+12)letdecomposeF(t)=12t3+t22t1=1(t1)(t+1)(t+12)F(t)=at1+bt+1+ct+12a=limt1(t1)F(t)=12.32=13b=limt1(t+1)F(t)=1(2)(12)=1c=limt12(t+12)F(t)=1(32)12=43F(t)=13(t1)+1t+143(t+12)A=F(t)dt=13lnt1+lnt+143lnt+12+cA=13lncosx1+lncosx+143lncosx+12+c

Answered by tanmay.chaudhury50@gmail.com last updated on 24/Aug/18

∫(dx/(sinx(2cosx+1)))  ∫((sinxdx)/((1−cos^2 x)(2cosx+1)))  t=cosx   dt=−sinxdx  ∫((−dt)/((1−t^2 )(2t+1)))  ∫(dt/((t+1)(t−1)(2t+1)))  (1/((t+1)(t−1)(2t+1)))=(a/(t+1))+(b/(t−1))+(c/(2t+1))  1=a(t−1)(2t+1)+b(t+1)(2t+1)+c(t+1)(t−1)  put t−1=0    t=1  b(1+1)(2+1)=1    b=(1/6)  put t+1=0  a(−1−1)(2×−1+1)=1  a(−2)(−1)=1    a=(1/2)  put 2t+1=0  c(((−1)/2)+1)(((−1)/2)−1)=1  c((1/4)−1)=1  c×((−3)/4)=1     c=((−4)/3)  ∫(a/(t+1))dt+∫(b/(t−1))dt+∫(c/(2t+1))dt  a∫(dt/(t+1))+b∫(dt/(t−1))+(c/2)∫(dt/(t+(1/2)))  aln(t+1)+bln(t−1)+(c/2)ln(t+(1/2))  (1/2)ln(cosx+1)+(1/6)ln(cosx−1)+((−4)/(2×3))ln(cosx+(1/2))+k

dxsinx(2cosx+1)sinxdx(1cos2x)(2cosx+1)t=cosxdt=sinxdxdt(1t2)(2t+1)dt(t+1)(t1)(2t+1)1(t+1)(t1)(2t+1)=at+1+bt1+c2t+11=a(t1)(2t+1)+b(t+1)(2t+1)+c(t+1)(t1)putt1=0t=1b(1+1)(2+1)=1b=16putt+1=0a(11)(2×1+1)=1a(2)(1)=1a=12put2t+1=0c(12+1)(121)=1c(141)=1c×34=1c=43at+1dt+bt1dt+c2t+1dtadtt+1+bdtt1+c2dtt+12aln(t+1)+bln(t1)+c2ln(t+12)12ln(cosx+1)+16ln(cosx1)+42×3ln(cosx+12)+k

Terms of Service

Privacy Policy

Contact: info@tinkutara.com