Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 42375 by Joel578 last updated on 24/Aug/18

Find value of  α such that the following system  has infinite many solutions    x − 3z = −3  −2x − αy + z = 2  x + 2y + αz = 1

Findvalueofαsuchthatthefollowingsystemhasinfinitemanysolutionsx3z=32xαy+z=2x+2y+αz=1

Commented by Joel578 last updated on 24/Aug/18

What is the idea to solve this problem?

Whatistheideatosolvethisproblem?

Commented by maxmathsup by imad last updated on 24/Aug/18

first we must have det A =0     (if detA≠0 weget a unique solution)  with A = (((1      0       −3)),((−2   −α     1)) )                          (1         2         α)  det A  =−α^2 −2 +2(6) −3α =−α^2  −3α +10   det A =0 ⇒α^2  +3α −10 =0  Δ =9 +40 =49 ⇒α_1 =  ((−3 +7)/2) =2    and  α_2 = ((−3−7)/2) =−5  for α =2  we get the system    { ((x−3z =−3)),((−2x−2y+z  =2)) :}    ⇒                                                                        {x+2y +2z =1   { ((x−3z =−3)),((−x+3z =3        and    x+2y +2z =1 ⇒ { ((x−3z =−3)),((2y =1−x−2z)) :})) :}  ⇒  { ((x =3z−3)),((y=(1/2){1−3z +3−2z}=(1/2){2−5z}   ⇒)) :}  (x,y,z) =(3z−3,1−(5/2)z ,z)    infinite solution  for α =−5   we follow the same method ....

firstwemusthavedetA=0(ifdetA0wegetauniquesolution)withA=(1032α1)(12α)detA=α22+2(6)3α=α23α+10detA=0α2+3α10=0Δ=9+40=49α1=3+72=2andα2=372=5forα=2wegetthesystem{x3z=32x2y+z=2{x+2y+2z=1{x3z=3x+3z=3andx+2y+2z=1{x3z=32y=1x2z{x=3z3y=12{13z+32z}=12{25z}(x,y,z)=(3z3,152z,z)infinitesolutionforα=5wefollowthesamemethod....

Commented by Joel578 last updated on 25/Aug/18

thank you very much

thankyouverymuch

Commented by math khazana by abdo last updated on 26/Aug/18

you are welcome.

youarewelcome.

Commented by Joel578 last updated on 27/Aug/18

Sir, if α = −5, the system will have no solution

Sir,ifα=5,thesystemwillhavenosolution

Answered by behi83417@gmail.com last updated on 24/Aug/18

      1x+0y−3z=−3  −2x−αy+1z=2       1x+2y+αz=1  ▲=1× determinant (((−α    1)),((2          α)))−0× determinant (((−2   1)),((1         α)))−3× determinant (((−2  −α)),((1            2)))≠0  ⇒−α^2 −2−3(−4+α)≠0  ⇒α^2 +3α−10≠0  ⇒α≠((−3±(√(9+40)))/2)≠((−3±7)/2)≠2,−5.■

1x+0y3z=32xαy+1z=21x+2y+αz=1=1×|α12α|0×|211α|3×|2α12|0α223(4+α)0α2+3α100α3±9+4023±722,5.

Commented by maxmathsup by imad last updated on 24/Aug/18

sir behi  if det M ≠ 0  the system have one solution  ...

sirbehiifdetM0thesystemhaveonesolution...

Commented by behi83417@gmail.com last updated on 24/Aug/18

yes sir.  when ▲=0⇒ i.e:α=2 or −5,the  system have many solutions.

yessir.when=0i.e:α=2or5,thesystemhavemanysolutions.

Commented by Joel578 last updated on 25/Aug/18

thank you very much

thankyouverymuch

Commented by Joel578 last updated on 27/Aug/18

If α = −5, the system will have no solution  Pls check

Ifα=5,thesystemwillhavenosolutionPlscheck

Commented by Joel578 last updated on 27/Aug/18

 ((1,0,(−3),(−3)),((−2),5,1,2),(1,2,(−5),1) )  R_2  + 2R_1  → R_2  ((1,0,(−3),(−3)),(0,5,(−5),(−4)),(1,2,(−5),1) )  R_3  − R_1  → R_3    ((1,0,(−3),(−3)),(0,5,(−5),(−4)),(0,2,(−2),4) )  R_2   ↔ R_3                ((1,0,(−3),(−3)),(0,2,(−2),4),(0,5,(−5),(−4)) )  (1/2)R_2   ↔ R_2          ((1,0,(−3),(−3)),(0,1,(−1),2),(0,5,(−5),(−4)) )  R_3  − 5R_2  → R_3  ((1,0,(−3),(−3)),(0,1,(−1),2),(0,0,0,(−14)) )

(103325121251)R2+2R1R2(103305541251)R3R1R3(103305540224)R2R3(103302240554)12R2R2(103301120554)R35R2R3(1033011200014)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com