All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 42391 by abdo.msup.com last updated on 24/Aug/18
findthevalueof∫0π4ln(1+tanx)dx
Commented by maxmathsup by imad last updated on 25/Aug/18
letA=∫0π4ln(1+tanx)dxchangementx=π4−tgiveA=∫0π4ln(1+tan(π4−t))dt=∫0π4ln(1+1−tant1+tant)dt=∫0π4ln(21+tant)dt=π4ln(2)−∫0π4ln(1+tant)dt=π4ln(2)−A⇒2A=π4ln(2)⇒A=π8ln(2).
Answered by tanmay.chaudhury50@gmail.com last updated on 24/Aug/18
I=∫0Π4ln(1+tanx)dx∫0Π4ln{1+tan(Π4−x)}dx∫0Π4ln{1+1−tanx1+tanx}dx∫0Π4ln(21+tanx)dx=∫0Π4ln2dx−∫0Π4ln(1+tanx)dx2I=ln2∫0Π4dxI=ln2×Π42=ln2×Π8
Terms of Service
Privacy Policy
Contact: info@tinkutara.com