Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42391 by abdo.msup.com last updated on 24/Aug/18

find the value of ∫_0 ^(π/4) ln(1+tanx)dx

findthevalueof0π4ln(1+tanx)dx

Commented by maxmathsup by imad last updated on 25/Aug/18

let A = ∫_0 ^(π/4)  ln(1+tanx) dx   changement x =(π/4) −t give  A = ∫_0 ^(π/4)  ln(1+tan((π/4)−t))dt  = ∫_0 ^(π/4)  ln(1+((1−tant)/(1+tant)))dt  =  ∫_0 ^(π/4)   ln((2/(1+tant))) dt  =(π/4)ln(2)  − ∫_0 ^(π/4)  ln(1+tant)dt  =(π/4)ln(2)−A ⇒ 2A =(π/4)ln(2) ⇒ A =(π/8)ln(2) .

letA=0π4ln(1+tanx)dxchangementx=π4tgiveA=0π4ln(1+tan(π4t))dt=0π4ln(1+1tant1+tant)dt=0π4ln(21+tant)dt=π4ln(2)0π4ln(1+tant)dt=π4ln(2)A2A=π4ln(2)A=π8ln(2).

Answered by tanmay.chaudhury50@gmail.com last updated on 24/Aug/18

 I=∫_0 ^(Π/4) ln(1+tanx)dx  ∫_0 ^(Π/4) ln{1+tan((Π/4)−x)}dx  ∫_0 ^(Π/4) ln{1+((1−tanx)/(1+tanx))}dx  ∫_0 ^(Π/4) ln((2/(1+tanx)))dx  =∫_0 ^(Π/4) ln2 dx−∫_0 ^(Π/4) ln(1+tanx)dx  2I=ln2∫_0 ^(Π/4) dx  I=ln2×((Π/4)/2)=ln2×(Π/8)

I=0Π4ln(1+tanx)dx0Π4ln{1+tan(Π4x)}dx0Π4ln{1+1tanx1+tanx}dx0Π4ln(21+tanx)dx=0Π4ln2dx0Π4ln(1+tanx)dx2I=ln20Π4dxI=ln2×Π42=ln2×Π8

Terms of Service

Privacy Policy

Contact: info@tinkutara.com