Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42407 by Tawa1 last updated on 25/Aug/18

∫ (1/(1 + tanx)) dx

$$\int\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{tanx}}\:\mathrm{dx} \\ $$

Commented by maxmathsup by imad last updated on 25/Aug/18

let I  = ∫     (dx/(1+tanx))  changement tanx =t give  I  = ∫     (1/((1+t)(t^2  +1)))dt  let decompose F(t) =  (1/((t+1)(t^2  +1)))  F(t) =(a/(t+1)) +((bt +c)/(t^2  +1))  we have a =lim_(t→−1) (t+1)F(t) =(1/2)  lim_(t→+∞) tF(t) =0 =a+b ⇒b =−(1/2)  F(0) =1 =a +c ⇒c =1−a =(1/2) ⇒F(t)=(1/(2(t+1))) −(1/2) ((t−1)/(t^2  +1)) ⇒  I =∫ F(t)dt =(1/2)ln∣t+1∣ −(1/4) ∫  ((2t−2)/(t^2  +1))dt  =(1/2)ln∣t+1∣ −(1/4)ln(t^2  +1) +(1/2)arctan(t) +c  =(x/2) +(1/2)ln∣1+tanx∣ −(1/4)ln(1+tan^2 x) +c .

$${let}\:{I}\:\:=\:\int\:\:\:\:\:\frac{{dx}}{\mathrm{1}+{tanx}}\:\:{changement}\:{tanx}\:={t}\:{give} \\ $$$${I}\:\:=\:\int\:\:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{1}+{t}\right)\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)}{dt}\:\:{let}\:{decompose}\:{F}\left({t}\right)\:=\:\:\frac{\mathrm{1}}{\left({t}+\mathrm{1}\right)\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)} \\ $$$${F}\left({t}\right)\:=\frac{{a}}{{t}+\mathrm{1}}\:+\frac{{bt}\:+{c}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:\:{we}\:{have}\:{a}\:={lim}_{{t}\rightarrow−\mathrm{1}} \left({t}+\mathrm{1}\right){F}\left({t}\right)\:=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${lim}_{{t}\rightarrow+\infty} {tF}\left({t}\right)\:=\mathrm{0}\:={a}+{b}\:\Rightarrow{b}\:=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${F}\left(\mathrm{0}\right)\:=\mathrm{1}\:={a}\:+{c}\:\Rightarrow{c}\:=\mathrm{1}−{a}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow{F}\left({t}\right)=\frac{\mathrm{1}}{\mathrm{2}\left({t}+\mathrm{1}\right)}\:−\frac{\mathrm{1}}{\mathrm{2}}\:\frac{{t}−\mathrm{1}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow \\ $$$${I}\:=\int\:{F}\left({t}\right){dt}\:=\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{t}+\mathrm{1}\mid\:−\frac{\mathrm{1}}{\mathrm{4}}\:\int\:\:\frac{\mathrm{2}{t}−\mathrm{2}}{{t}^{\mathrm{2}} \:+\mathrm{1}}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{t}+\mathrm{1}\mid\:−\frac{\mathrm{1}}{\mathrm{4}}{ln}\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)\:+\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left({t}\right)\:+{c} \\ $$$$=\frac{{x}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\mathrm{1}+{tanx}\mid\:−\frac{\mathrm{1}}{\mathrm{4}}{ln}\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right)\:+{c}\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Aug/18

(1/2)∫((2cosx)/(sinx+cosx))dx  (1/2)∫((sinx+cosx+cosx−sinx)/(sinx+cosx))dx  (1/2)∫dx+(1/2)∫((d(sinx+cosx))/(sinx+cosx))  =(1/2){x+ln(sinx+cosx)}+c

$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{2}{cosx}}{{sinx}+{cosx}}{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{sinx}+{cosx}+{cosx}−{sinx}}{{sinx}+{cosx}}{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int{dx}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left({sinx}+{cosx}\right)}{{sinx}+{cosx}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{{x}+{ln}\left({sinx}+{cosx}\right)\right\}+{c} \\ $$

Commented by Tawa1 last updated on 25/Aug/18

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com