Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42430 by maxmathsup by imad last updated on 25/Aug/18

find ∫       (dx/(3+tan^2 x))

finddx3+tan2x

Commented by maxmathsup by imad last updated on 25/Aug/18

let A = ∫   (dx/(3+tan^2 x))   changement  tanx =(√3) t give x=arctan((√3)t)  A = ∫  (1/(3(1+t^2 ))) ((√3)/(1+3t^2 ))dt =(1/(√3)) ∫      (dt/((t^2  +1)(3t^2  +1)))  let find a and b /  F(t)=(1/((t^2 +1)(3t^2 +1))) =(a/(t^2  +1)) +(b/(3t^2  +1))  lim_(t→+∞) t^2 F(t) =0 =a+(b/3) ⇒3a+b =0 ⇒b =−3a ⇒  F(t) =(a/(t^2  +1)) −((3a)/(3t^2  +1))  F(0) =1 =−2a ⇒a =−(1/2) ⇒b =(3/2) ⇒F(t)=−(1/(2(t^2  +1))) +(3/(2(3t^2  +1))) ⇒  A =∫ F(t)dt =−(1/2) ∫   (dt/(t^2  +1)) +(3/2) ∫   (dt/(1+3t^2 )) but ∫  (dt/(t^2  +1)) =arctant  ∫     (dt/(1+3t^2 )) =_((√3)t=u)     (1/(√3))∫     (du/(1+u^2 )) =(1/(√3)) arctan((√3)t) ⇒  A =−(1/2) arctant  +((√3)/2) arctan((√3)t) +c  = −(1/2)arctan(((tanx)/(√3))) +((√3)/2) x +c .

letA=dx3+tan2xchangementtanx=3tgivex=arctan(3t)A=13(1+t2)31+3t2dt=13dt(t2+1)(3t2+1)letfindaandb/F(t)=1(t2+1)(3t2+1)=at2+1+b3t2+1limt+t2F(t)=0=a+b33a+b=0b=3aF(t)=at2+13a3t2+1F(0)=1=2aa=12b=32F(t)=12(t2+1)+32(3t2+1)A=F(t)dt=12dtt2+1+32dt1+3t2butdtt2+1=arctantdt1+3t2=3t=u13du1+u2=13arctan(3t)A=12arctant+32arctan(3t)+c=12arctan(tanx3)+32x+c.

Commented by maxmathsup by imad last updated on 25/Aug/18

A =(1/(√3)) ∫ F(t)dt ⇒A =−(1/(2(√3))) arctan(((tanx)/(√3))) +(x/2) +c  .

A=13F(t)dtA=123arctan(tanx3)+x2+c.

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Aug/18

∫(dx/(3+((1−cos2x)/(1+cos2x))))  ∫((1+cos2x)/(3+3cos2x+1−cos2x))dx  ∫((1+cos2x)/(4+2cos2x))dx  (1/2)∫((2+cos2x−1)/(2+cos2x))dx  (1/2)∫dx−(1/2)∫(dx/(2+cos2x))  (((1/2)∫dx−(1/2)∫((1+tan^2 x)/(2+2tan^2 x+1−tan^2 x))dx)/)  (1/2)∫dx−(1/2)∫((sec^2 x)/(3+tan^2 x))dx  (1/2)∫dx−(1/2)∫((d(tanx))/(3+tan^2 x))dx→∫(dx/(x^2 +a^2 ))   formula  (x/2)−(1/2)×(1/(√3))tan^(−1) (((tanx)/(√3)))+c

dx3+1cos2x1+cos2x1+cos2x3+3cos2x+1cos2xdx1+cos2x4+2cos2xdx122+cos2x12+cos2xdx12dx12dx2+cos2x12dx121+tan2x2+2tan2x+1tan2xdx12dx12sec2x3+tan2xdx12dx12d(tanx)3+tan2xdxdxx2+a2formulax212×13tan1(tanx3)+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com