Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42435 by maxmathsup by imad last updated on 25/Aug/18

find  ∫_0 ^1    (dx/((√x) +(√(1−x))))

find01dxx+1x

Commented by maxmathsup by imad last updated on 25/Aug/18

let I = ∫_0 ^1     (dx/((√x) +(√(1−x))))   changement x=sin^2 t give  I =  ∫_0 ^(π/2)     ((2 sint cost dt)/(sint +cost)) = ∫_0 ^(π/2)    ((sin^2 t +cos^2 t +2sint cost −1)/(sint +cost))dt  = ∫_0 ^(π/2)    (((sint +cost)^2 −1)/(sint +cost)) dt =∫_0 ^(π/2) (sint +cost)dt −∫_0 ^(π/2)   (dt/(sint +cost))  =[sint −cost]_0 ^(π/2)   − ∫_0 ^(π/2)    (dt/(sint +cost))  =2 −∫_0 ^(π/2)    (dt/(sint +cost))  changement tan((t/2))=u give  ∫_0 ^(π/2)    (dt/(sint +cost)) =∫_0 ^1      (1/(((2u)/(1+u^2 )) +((1−u^2 )/(1+u^2 ))))  ((2du)/(1+u^2 )) = 2 ∫_0 ^1     (du/(2u+1−u^2 ))  =−2  ∫_0 ^1    (du/(u^2 −2u −1))  =−2  ∫_0 ^1     (du/((u−1)^2 −1)) =_(u−1 =−α)  −2  ∫_1 ^0     ((−dα)/(α^2 −1))      =−2 ∫_0 ^1    (dα/(α^2 −1)) =− ∫_0 ^1    ((1/(α−1))−(1/(α+1))) =−[ln∣((α−1)/(α +1))∣_0 ^1  = +∞ so this  integral diverges !..

letI=01dxx+1xchangementx=sin2tgiveI=0π22sintcostdtsint+cost=0π2sin2t+cos2t+2sintcost1sint+costdt=0π2(sint+cost)21sint+costdt=0π2(sint+cost)dt0π2dtsint+cost=[sintcost]0π20π2dtsint+cost=20π2dtsint+costchangementtan(t2)=ugive0π2dtsint+cost=0112u1+u2+1u21+u22du1+u2=201du2u+1u2=201duu22u1=201du(u1)21=u1=α210dαα21=201dαα21=01(1α11α+1)=[lnα1α+101=+sothisintegraldiverges!..

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Aug/18

I=  x=sin^2 α   dx=2sinαcosα  ∫_0 ^(Π/2) ((2sinαcosα)/(sinα+cosα))dα  ∫_0 ^(Π/2) ((sin^2 α+cos^2 α+2sinαcosα−1)/(sinα+cosα))dα  ∫_0 ^(Π/2) sinα+cosα dα−∫_0 ^(Π/2) (dα/(sinα+cosα))  ∫_0 ^(Π/2) sinα+cosα dα−∫_0 ^(Π/2) ((sec^2 (α/2))/(2tan(α/2)+1−tan^2 (α/2)))dα  ∫_0 ^(Π/2) sinα+cosα dα+2∫_0 ^(Π/2) ((d(tan(α/2)))/(tan^2 (α/2)−2tan(α/2)+1−2))  ∫_0 ^(Π/2) sinα+cosα dα+2∫_0 ^(Π/2) ((d(tan(α/2)))/((tan(α/2)−1)^2 −1))  ∫_0 ^(Π/2) sinα+cosα dα−2∫_0 ^(Π/2) ((d(tan(α/2)))/(1−(tan(α/2)−1)^2 ))  ∫_0 ^(Π/2)  sinα+cosα dα−2∫_0 ^(Π/2) ((d(tan(α/2) −1))/((tan(α/2)−1)^2 −1))→∫(dx/(x^2 −a^2 ))  =∣−cosα+sinα∣_0 ^(Π/2) −2×(1/2)ln∣((tan(α/2)−1−1)/(tan(α/2)−1+1))∣_0 ^(Π/2)   ={(−0+1)−(−1+0)}−{ln∣((1−1−1)/(1−1+1))∣−ln∣((−2)/0)∣}  =2−{ln∣−1∣−ln∣−∞∣}

I=x=sin2αdx=2sinαcosα0Π22sinαcosαsinα+cosαdα0Π2sin2α+cos2α+2sinαcosα1sinα+cosαdα0Π2sinα+cosαdα0Π2dαsinα+cosα0Π2sinα+cosαdα0Π2sec2α22tanα2+1tan2α2dα0Π2sinα+cosαdα+20Π2d(tanα2)tan2α22tanα2+120Π2sinα+cosαdα+20Π2d(tanα2)(tanα21)210Π2sinα+cosαdα20Π2d(tanα2)1(tanα21)20Π2sinα+cosαdα20Π2d(tanα21)(tanα21)21dxx2a2=∣cosα+sinα0Π22×12lntanα211tanα21+10Π2={(0+1)(1+0)}{ln11111+1ln20}=2{ln1ln}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com