All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 42435 by maxmathsup by imad last updated on 25/Aug/18
find∫01dxx+1−x
Commented by maxmathsup by imad last updated on 25/Aug/18
letI=∫01dxx+1−xchangementx=sin2tgiveI=∫0π22sintcostdtsint+cost=∫0π2sin2t+cos2t+2sintcost−1sint+costdt=∫0π2(sint+cost)2−1sint+costdt=∫0π2(sint+cost)dt−∫0π2dtsint+cost=[sint−cost]0π2−∫0π2dtsint+cost=2−∫0π2dtsint+costchangementtan(t2)=ugive∫0π2dtsint+cost=∫0112u1+u2+1−u21+u22du1+u2=2∫01du2u+1−u2=−2∫01duu2−2u−1=−2∫01du(u−1)2−1=u−1=−α−2∫10−dαα2−1=−2∫01dαα2−1=−∫01(1α−1−1α+1)=−[ln∣α−1α+1∣01=+∞sothisintegraldiverges!..
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Aug/18
I=x=sin2αdx=2sinαcosα∫0Π22sinαcosαsinα+cosαdα∫0Π2sin2α+cos2α+2sinαcosα−1sinα+cosαdα∫0Π2sinα+cosαdα−∫0Π2dαsinα+cosα∫0Π2sinα+cosαdα−∫0Π2sec2α22tanα2+1−tan2α2dα∫0Π2sinα+cosαdα+2∫0Π2d(tanα2)tan2α2−2tanα2+1−2∫0Π2sinα+cosαdα+2∫0Π2d(tanα2)(tanα2−1)2−1∫0Π2sinα+cosαdα−2∫0Π2d(tanα2)1−(tanα2−1)2∫0Π2sinα+cosαdα−2∫0Π2d(tanα2−1)(tanα2−1)2−1→∫dxx2−a2=∣−cosα+sinα∣0Π2−2×12ln∣tanα2−1−1tanα2−1+1∣0Π2={(−0+1)−(−1+0)}−{ln∣1−1−11−1+1∣−ln∣−20∣}=2−{ln∣−1∣−ln∣−∞∣}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com