Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 42446 by ajfour last updated on 25/Aug/18

Commented by ajfour last updated on 26/Aug/18

Find maximum r in terms of  a and R.

$${Find}\:{maximum}\:\boldsymbol{{r}}\:{in}\:{terms}\:{of} \\ $$$$\boldsymbol{{a}}\:{and}\:\boldsymbol{{R}}.\: \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 26/Aug/18

solve x^2 +(y−R)^2 =R^2    and y=ax^2   x^2 +y^2 −2yR=0  x^2 +a^2 x^4 −2ax^2 R=0  x^2 (1+a^2 x^2 −2aR)=0  a^2 x^2 =2aR−1  x=((±(√(2aR−1)) )/a)  y=ax^2 =a(((2aR−1)/a^2 ))=((2aR−1)/a)  point of intersection are  (((√(2aR−1))/a),((2aR−1)/a)) and(((−(√(2aR−1)))/a),((2aR−1)/a))  considering+ve side  now area between y=ax^2  and x^2 +y^2 −2yR=0  and yaxis say=A  remaining area between   parabola and circle=B  so 2A+2B=ΠR^2   B=((ΠR^2 )/2)−A  now area B=Πr^2 +remaining area symetrical   w.r.t Πr^2   B=Πr^2 +2S  to maximize B  contd

$${solve}\:{x}^{\mathrm{2}} +\left({y}−{R}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \:\:\:{and}\:{y}={ax}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{yR}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{a}^{\mathrm{2}} {x}^{\mathrm{4}} −\mathrm{2}{ax}^{\mathrm{2}} {R}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} \left(\mathrm{1}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} −\mathrm{2}{aR}\right)=\mathrm{0} \\ $$$${a}^{\mathrm{2}} {x}^{\mathrm{2}} =\mathrm{2}{aR}−\mathrm{1} \\ $$$${x}=\frac{\pm\sqrt{\mathrm{2}{aR}−\mathrm{1}}\:}{{a}} \\ $$$${y}={ax}^{\mathrm{2}} ={a}\left(\frac{\mathrm{2}{aR}−\mathrm{1}}{{a}^{\mathrm{2}} }\right)=\frac{\mathrm{2}{aR}−\mathrm{1}}{{a}} \\ $$$${point}\:{of}\:{intersection}\:{are} \\ $$$$\left(\frac{\sqrt{\mathrm{2}{aR}−\mathrm{1}}}{{a}},\frac{\mathrm{2}{aR}−\mathrm{1}}{{a}}\right)\:{and}\left(\frac{−\sqrt{\mathrm{2}{aR}−\mathrm{1}}}{{a}},\frac{\mathrm{2}{aR}−\mathrm{1}}{{a}}\right) \\ $$$${considering}+{ve}\:{side} \\ $$$${now}\:{area}\:{between}\:{y}={ax}^{\mathrm{2}} \:{and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{yR}=\mathrm{0} \\ $$$${and}\:{yaxis}\:{say}={A}\:\:{remaining}\:{area}\:{between}\: \\ $$$${parabola}\:{and}\:{circle}={B} \\ $$$${so}\:\mathrm{2}{A}+\mathrm{2}{B}=\Pi{R}^{\mathrm{2}} \\ $$$${B}=\frac{\Pi{R}^{\mathrm{2}} }{\mathrm{2}}−{A} \\ $$$${now}\:{area}\:{B}=\Pi{r}^{\mathrm{2}} +{remaining}\:{area}\:{symetrical} \\ $$$$\:{w}.{r}.{t}\:\Pi{r}^{\mathrm{2}} \\ $$$${B}=\Pi{r}^{\mathrm{2}} +\mathrm{2}{S} \\ $$$${to}\:{maximize}\:{B} \\ $$$${contd} \\ $$$$ \\ $$

Answered by MJS last updated on 27/Aug/18

tangents parallel but not of interest  normals in tangential points must be the same  distance between these points = 2r    y=ax^2   T_p = ((p),((ap^2 )) )  n_p : y=kx+d       k=−(1/(y′))=−(1/(2ap))    d=((2a^2 p^2 +1)/(2a))  n_p : −(1/(2ap))x+((2a^2 p^2 +1)/(2a))    y=R−(√(R^2 −x^2 ))  T_c = ((q),((R−(√(R^2 −q^2 )))) )  n_c : y=kx+d       k=−(1/(y′))=−((√(R^2 −q^2 ))/q)     d=R  n_c : y=−((√(R^2 −q^2 ))/q)x+R    n_p =n_c   (1)     −(1/(2ap))=−((√(R^2 −q^2 ))/q)  (2)     ((2a^2 p^2 +1)/(2a))=R  ⇒ p=−((√(2(2aR−1)))/(2a)) ∧ q=−R(√((2(2aR−1))/(4aR−1)))  T_p = (((−((√(2(2aR−1)))/(2a)))),(((2ar−1)/(2a))) )     T_c = (((−R(√((2(2aR−1))/(4aR−1))))),((R(((−1+(√(4aR−1)))/(√(4aR−1)))))) )  r=((∣T_p T_c ∣)/2)=((√(aR(aR+1−(1/(4aR))−(√(4aR−1)))))/(2a))    please check, if the idea is ok...

$$\mathrm{tangents}\:\mathrm{parallel}\:\mathrm{but}\:\mathrm{not}\:\mathrm{of}\:\mathrm{interest} \\ $$$$\mathrm{normals}\:\mathrm{in}\:\mathrm{tangential}\:\mathrm{points}\:\mathrm{must}\:\mathrm{be}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{distance}\:\mathrm{between}\:\mathrm{these}\:\mathrm{points}\:=\:\mathrm{2}{r} \\ $$$$ \\ $$$${y}={ax}^{\mathrm{2}} \\ $$$${T}_{{p}} =\begin{pmatrix}{{p}}\\{{ap}^{\mathrm{2}} }\end{pmatrix} \\ $$$${n}_{{p}} :\:{y}={kx}+{d} \\ $$$$\:\:\:\:\:{k}=−\frac{\mathrm{1}}{{y}'}=−\frac{\mathrm{1}}{\mathrm{2}{ap}}\:\:\:\:{d}=\frac{\mathrm{2}{a}^{\mathrm{2}} {p}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}{a}} \\ $$$${n}_{{p}} :\:−\frac{\mathrm{1}}{\mathrm{2}{ap}}{x}+\frac{\mathrm{2}{a}^{\mathrm{2}} {p}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}{a}} \\ $$$$ \\ $$$${y}={R}−\sqrt{{R}^{\mathrm{2}} −{x}^{\mathrm{2}} } \\ $$$${T}_{{c}} =\begin{pmatrix}{{q}}\\{{R}−\sqrt{{R}^{\mathrm{2}} −{q}^{\mathrm{2}} }}\end{pmatrix} \\ $$$${n}_{{c}} :\:{y}={kx}+{d} \\ $$$$\:\:\:\:\:{k}=−\frac{\mathrm{1}}{{y}'}=−\frac{\sqrt{{R}^{\mathrm{2}} −{q}^{\mathrm{2}} }}{{q}}\:\:\:\:\:{d}={R} \\ $$$${n}_{{c}} :\:{y}=−\frac{\sqrt{{R}^{\mathrm{2}} −{q}^{\mathrm{2}} }}{{q}}{x}+{R} \\ $$$$ \\ $$$${n}_{{p}} ={n}_{{c}} \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:−\frac{\mathrm{1}}{\mathrm{2}{ap}}=−\frac{\sqrt{{R}^{\mathrm{2}} −{q}^{\mathrm{2}} }}{{q}} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\frac{\mathrm{2}{a}^{\mathrm{2}} {p}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}{a}}={R} \\ $$$$\Rightarrow\:{p}=−\frac{\sqrt{\mathrm{2}\left(\mathrm{2}{aR}−\mathrm{1}\right)}}{\mathrm{2}{a}}\:\wedge\:{q}=−{R}\sqrt{\frac{\mathrm{2}\left(\mathrm{2}{aR}−\mathrm{1}\right)}{\mathrm{4}{aR}−\mathrm{1}}} \\ $$$${T}_{{p}} =\begin{pmatrix}{−\frac{\sqrt{\mathrm{2}\left(\mathrm{2}{aR}−\mathrm{1}\right)}}{\mathrm{2}{a}}}\\{\frac{\mathrm{2}{ar}−\mathrm{1}}{\mathrm{2}{a}}}\end{pmatrix}\:\:\:\:\:{T}_{{c}} =\begin{pmatrix}{−{R}\sqrt{\frac{\mathrm{2}\left(\mathrm{2}{aR}−\mathrm{1}\right)}{\mathrm{4}{aR}−\mathrm{1}}}}\\{{R}\left(\frac{−\mathrm{1}+\sqrt{\mathrm{4}{aR}−\mathrm{1}}}{\sqrt{\mathrm{4}{aR}−\mathrm{1}}}\right)}\end{pmatrix} \\ $$$${r}=\frac{\mid{T}_{{p}} {T}_{{c}} \mid}{\mathrm{2}}=\frac{\sqrt{{aR}\left({aR}+\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}{aR}}−\sqrt{\mathrm{4}{aR}−\mathrm{1}}\right)}}{\mathrm{2}{a}} \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{check},\:\mathrm{if}\:\mathrm{the}\:\mathrm{idea}\:\mathrm{is}\:\mathrm{ok}... \\ $$

Commented by ajfour last updated on 27/Aug/18

No sir, i had commited some error;  i have not been able to solve it yet..

$${No}\:{sir},\:{i}\:{had}\:{commited}\:{some}\:{error}; \\ $$$${i}\:{have}\:{not}\:{been}\:{able}\:{to}\:{solve}\:{it}\:{yet}.. \\ $$

Commented by MJS last updated on 27/Aug/18

ok I′ll check mine...

$$\mathrm{ok}\:\mathrm{I}'\mathrm{ll}\:\mathrm{check}\:\mathrm{mine}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com