All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 42503 by maxmathsup by imad last updated on 26/Aug/18
calculate∫−∞+∞dx1+x2+x4
Commented by maxmathsup by imad last updated on 27/Aug/18
methodofresidusletφ(z)=1z4+z2+1.rootsofz4+z2+1=0z2=t⇒t2+t+1=0Δ=1−4=−3=(i3)2⇒t1=−1+i32=ei2π3(=j)t2=−1−i32=e−i2π2⇒z2=ei2π3⇒z=+−eiπ3andz2=e−i2π3⇒z=+−e−iπ3⇒φ(z)=1(z−eiπ3)(z+eiπ3)(z−e−iπ3)(z+e−iπ3)⇒∫−∞+∞φ(z)dz=2iπ{Res(φ,eiπ3)+Res(φ,−e−iπ3)}butRes(φ,eiπ3)=limz→eiπ3(z−eiπ3)φ(z)=12eiπ3(2isin(π3))(2cos(π3))=e−iπ38i3212=e−iπ34i3Res(φ,−e−iπ3)=limz→−e−iπ3(z+e−iπ3)φ(z)=1(−2isin(π3)(2cos(π3))(−2e−iπ3)=eiπ34i3⇒∫−∞+∞φ(z)dz=2iπ14i3{e−iπ3+eiπ3}=π232cos(π3)=π23(1)⇒∫−∞+∞dx1+x2+x4=π23.
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Aug/18
∫−∞∞1x2x2+1x2+1dx12∫−∞∞1+1x2−(1−1x2)x2+1x2+1dx12[∫−∞∞d(x−1x)(x−1x)2+3−∫−∞∞d(x+1x)(x+1x)2−1]12[∣13tan−1(x−1x3)∣−∞∞−12×1∣ln(x+1x−1x+1x+1)∣−∞∞]=12[13(Π2+Π2)−12{ln(∞−1∞+1)−ln∣(−∞−1−∞+2)∣]12[Π3−12{ln(1−01+0)−ln∣(∞+12−∞)∣}]12[Π3−12{0−ln∣1+1∞2∞−1∣}]12×Π3−12(0−0)Π23
Terms of Service
Privacy Policy
Contact: info@tinkutara.com