Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42503 by maxmathsup by imad last updated on 26/Aug/18

calculate  ∫_(−∞) ^(+∞)       (dx/(1+x^2  +x^4 ))

calculate+dx1+x2+x4

Commented by maxmathsup by imad last updated on 27/Aug/18

method of residus let ϕ(z) =(1/(z^4  +z^2  +1))  .roots of z^4  +z^2  +1 =0  z^2 =t ⇒t^2  +t +1 =0 Δ =1−4=−3=(i(√3))^2  ⇒t_1 =((−1+i(√3))/2) =e^(i((2π)/3))    (=j)  t_2 =((−1−i(√3))/2) =e^(−((i2π)/2))   ⇒ z^2  =e^((i2π)/3)  ⇒ z =+^−  e^((iπ)/3)   and z_2 =e^(−((i2π)/3))  ⇒z =+^− e^(−((iπ)/3))   ⇒ϕ(z) = (1/((z−e^((iπ)/3) )(z+e^((iπ)/3) )(z−e^(−((iπ)/3)) )(z +e^(−((iπ)/3)) ))) ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ { Res(ϕ,e^((iπ)/3) ) +Res(ϕ,−e^(−((iπ)/3)) )}  but    Res(ϕ, e^((iπ)/3) ) =lim_(z→e^((iπ)/3) )    (z−e^((iπ)/3) )ϕ(z) = (1/(2 e^((iπ)/3)  (2i sin((π/3)))(2cos((π/3)))))  =   (e^(−((iπ)/3)) /(8i ((√3)/(2 )) (1/2))) =  (e^(−((iπ)/3)) /(4i(√3)))  Res(ϕ, −e^(−((iπ)/3)) ) =lim_(z→−e^(−((iπ)/3)) )     (z+e^(−((iπ)/3)) )ϕ(z) = (1/((−2isin((π/3))(2cos((π/3)))(−2e^(−((iπ)/3)) )))  =  (e^((iπ)/3) /(4i(√3))) ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ(1/(4i(√3))){ e^(−((iπ)/3))  +e^((iπ)/3) }  = (π/(2(√3))) 2 cos((π/3)) =(π/(2(√3)))(1) ⇒ ∫_(−∞) ^(+∞)    (dx/(1+x^2  +x^4 )) = (π/(2(√3))) .

methodofresidusletφ(z)=1z4+z2+1.rootsofz4+z2+1=0z2=tt2+t+1=0Δ=14=3=(i3)2t1=1+i32=ei2π3(=j)t2=1i32=ei2π2z2=ei2π3z=+eiπ3andz2=ei2π3z=+eiπ3φ(z)=1(zeiπ3)(z+eiπ3)(zeiπ3)(z+eiπ3)+φ(z)dz=2iπ{Res(φ,eiπ3)+Res(φ,eiπ3)}butRes(φ,eiπ3)=limzeiπ3(zeiπ3)φ(z)=12eiπ3(2isin(π3))(2cos(π3))=eiπ38i3212=eiπ34i3Res(φ,eiπ3)=limzeiπ3(z+eiπ3)φ(z)=1(2isin(π3)(2cos(π3))(2eiπ3)=eiπ34i3+φ(z)dz=2iπ14i3{eiπ3+eiπ3}=π232cos(π3)=π23(1)+dx1+x2+x4=π23.

Answered by tanmay.chaudhury50@gmail.com last updated on 27/Aug/18

∫_(−∞) ^∞ ((1/x^2 )/(x^2 +(1/x^2 )+1))dx  (1/2)∫_(−∞) ^∞ ((1+(1/x^2 )−(1−(1/x^2 )))/(x^2 +(1/x^2 )+1))dx  (1/2)[∫_(−∞) ^∞ ((d(x−(1/x)))/((x−(1/x))^2 +3))−∫_(−∞) ^∞ ((d(x+(1/x)))/((x+(1/x))^2 −1))]  (1/2)[∣(1/(√3))tan^(−1) (((x−(1/x))/(√3)))∣_(−∞) ^∞ −(1/(2×1))∣ln(((x+(1/x)−1)/(x+(1/x)+1)))∣_(−∞) ^∞ ]  =(1/2)[(1/(√3))((Π/2)+(Π/2))−(1/(2 )){ln(((∞−1)/(∞+1)))−ln∣(((−∞−1)/(−∞+2)))∣]  (1/2)[(Π/(√3))−(1/2){ln(((1−0)/(1+0)))−ln∣(((∞+1)/(2−∞)))∣}]  (1/2)[(Π/(√3))−(1/2){0−ln∣((1+(1/∞))/((2/∞)−1))∣}]  (1/2)×(Π/(√3))−(1/2)(0−0)  (Π/(2(√3)))

1x2x2+1x2+1dx121+1x2(11x2)x2+1x2+1dx12[d(x1x)(x1x)2+3d(x+1x)(x+1x)21]12[13tan1(x1x3)12×1ln(x+1x1x+1x+1)]=12[13(Π2+Π2)12{ln(1+1)ln(1+2)]12[Π312{ln(101+0)ln(+12)}]12[Π312{0ln1+121}]12×Π312(00)Π23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com