Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42504 by maxmathsup by imad last updated on 26/Aug/18

let x>0 prove that  ∫_0 ^∞     ((e^(−t^2 ) ln(1+xt^2 ))/t^2 ) dt =π ∫_0 ^(√x)   e^(1/u^2 )   du .

$${let}\:{x}>\mathrm{0}\:{prove}\:{that} \\ $$ $$\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{e}^{−{t}^{\mathrm{2}} } {ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }\:{dt}\:=\pi\:\int_{\mathrm{0}} ^{\sqrt{{x}}} \:\:{e}^{\frac{\mathrm{1}}{{u}^{\mathrm{2}} }} \:\:{du}\:. \\ $$

Commented bymaxmathsup by imad last updated on 28/Aug/18

let f(x) = ∫_0 ^∞    ((e^(−t^2 ) ln(1+xt^2 ))/t^2 )dt ⇒f^′ (x)= ∫_0 ^∞     (e^(−t^2 ) /(1+xt^2 ))dt ⇒  2f^′ (x) = ∫_(−∞) ^(+∞)     (e^(−t^2 ) /(1+xt^2 ))dt  let consider the complex function  ϕ(z) = (e^(−z^2 ) /(1+xz^2 ))  we have ϕ(z) = (e^(−z^2 ) /(((√x)z−i)((√x)z +i))) =(e^(−z^2 ) /(x(z−(i/(√x)))(z+(i/((√x)))))))  the poles of ϕ are +^−  (i/(√x))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ Res(ϕ,(i/(√x)))  but   Res(ϕ,(i/(√x)))= (e^(1/x) /(x(((2i)/(√x))))) = (e^(1/x) /(2i(√x))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ  (e^(1/x) /(2i(√x))) =π (e^(1/x) /(√x)) ⇒ f^′ (x) =(π/2) (e^(1/x) /(√x)) ⇒  f(x) =(π/2) ∫_0 ^x    (e^(1/t) /(√t))dt  +c   but  c=f(0) =0 ⇒f(x) =(π/2) ∫_0 ^x   (e^(1/t) /(√t)) dt  =_((√t)=u)     (π/2)  ∫_0 ^(√x)   (e^(1/u^2 ) /u) (2u)du  = π   ∫_0 ^(√x)     e^(1/u^2 )  du .

$${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−{t}^{\mathrm{2}} } {ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt}\:\Rightarrow{f}^{'} \left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{e}^{−{t}^{\mathrm{2}} } }{\mathrm{1}+{xt}^{\mathrm{2}} }{dt}\:\Rightarrow \\ $$ $$\mathrm{2}{f}^{'} \left({x}\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{e}^{−{t}^{\mathrm{2}} } }{\mathrm{1}+{xt}^{\mathrm{2}} }{dt}\:\:{let}\:{consider}\:{the}\:{complex}\:{function} \\ $$ $$\varphi\left({z}\right)\:=\:\frac{{e}^{−{z}^{\mathrm{2}} } }{\mathrm{1}+{xz}^{\mathrm{2}} }\:\:{we}\:{have}\:\varphi\left({z}\right)\:=\:\frac{{e}^{−{z}^{\mathrm{2}} } }{\left(\sqrt{{x}}{z}−{i}\right)\left(\sqrt{{x}}{z}\:+{i}\right)}\:=\frac{{e}^{−{z}^{\mathrm{2}} } }{{x}\left({z}−\frac{{i}}{\sqrt{{x}}}\right)\left({z}+\frac{{i}}{\left.\sqrt{{x}}\right)}\right)} \\ $$ $${the}\:{poles}\:{of}\:\varphi\:{are}\:\overset{−} {+}\:\frac{{i}}{\sqrt{{x}}} \\ $$ $$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,\frac{{i}}{\sqrt{{x}}}\right)\:\:{but}\:\:\:{Res}\left(\varphi,\frac{{i}}{\sqrt{{x}}}\right)=\:\frac{{e}^{\frac{\mathrm{1}}{{x}}} }{{x}\left(\frac{\mathrm{2}{i}}{\sqrt{{x}}}\right)}\:=\:\frac{{e}^{\frac{\mathrm{1}}{{x}}} }{\mathrm{2}{i}\sqrt{{x}}}\:\Rightarrow \\ $$ $$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\:\frac{{e}^{\frac{\mathrm{1}}{{x}}} }{\mathrm{2}{i}\sqrt{{x}}}\:=\pi\:\frac{{e}^{\frac{\mathrm{1}}{{x}}} }{\sqrt{{x}}}\:\Rightarrow\:{f}^{'} \left({x}\right)\:=\frac{\pi}{\mathrm{2}}\:\frac{{e}^{\frac{\mathrm{1}}{{x}}} }{\sqrt{{x}}}\:\Rightarrow \\ $$ $${f}\left({x}\right)\:=\frac{\pi}{\mathrm{2}}\:\int_{\mathrm{0}} ^{{x}} \:\:\:\frac{{e}^{\frac{\mathrm{1}}{{t}}} }{\sqrt{{t}}}{dt}\:\:+{c}\:\:\:{but}\:\:{c}={f}\left(\mathrm{0}\right)\:=\mathrm{0}\:\Rightarrow{f}\left({x}\right)\:=\frac{\pi}{\mathrm{2}}\:\int_{\mathrm{0}} ^{{x}} \:\:\frac{{e}^{\frac{\mathrm{1}}{{t}}} }{\sqrt{{t}}}\:{dt} \\ $$ $$=_{\sqrt{{t}}={u}} \:\:\:\:\frac{\pi}{\mathrm{2}}\:\:\int_{\mathrm{0}} ^{\sqrt{{x}}} \:\:\frac{{e}^{\frac{\mathrm{1}}{{u}^{\mathrm{2}} }} }{{u}}\:\left(\mathrm{2}{u}\right){du}\:\:=\:\pi\:\:\:\int_{\mathrm{0}} ^{\sqrt{{x}}} \:\:\:\:{e}^{\frac{\mathrm{1}}{{u}^{\mathrm{2}} }} \:{du}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com