All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 42504 by maxmathsup by imad last updated on 26/Aug/18
letx>0provethat ∫0∞e−t2ln(1+xt2)t2dt=π∫0xe1u2du.
Commented bymaxmathsup by imad last updated on 28/Aug/18
letf(x)=∫0∞e−t2ln(1+xt2)t2dt⇒f′(x)=∫0∞e−t21+xt2dt⇒ 2f′(x)=∫−∞+∞e−t21+xt2dtletconsiderthecomplexfunction φ(z)=e−z21+xz2wehaveφ(z)=e−z2(xz−i)(xz+i)=e−z2x(z−ix)(z+ix)) thepolesofφare+−ix ∫−∞+∞φ(z)dz=2iπRes(φ,ix)butRes(φ,ix)=e1xx(2ix)=e1x2ix⇒ ∫−∞+∞φ(z)dz=2iπe1x2ix=πe1xx⇒f′(x)=π2e1xx⇒ f(x)=π2∫0xe1ttdt+cbutc=f(0)=0⇒f(x)=π2∫0xe1ttdt =t=uπ2∫0xe1u2u(2u)du=π∫0xe1u2du.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com