Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42593 by aseerimad last updated on 28/Aug/18

Commented by maxmathsup by imad last updated on 28/Aug/18

we have I = ∫_0 ^(π/2)    ((cos^4 x +sin^4  x−sin^4 x)/(sin^4 x +cos^4 x))dx =(π/2) −∫_0 ^(π/2)   ((sin^4 x)/(sin^4 x +cos^4 x))dx but  changement x=(π/2)−t give ∫_0 ^(π/2)   ((sin^4 x)/(sin^4 x +cos^4 x))dx = ∫_0 ^(π/2)  ((cos^4 t)/(cos^4 x +sin^4 x))dt  =I ⇒ 2I =(π/2) ⇒ I =(π/4) .

wehaveI=0π2cos4x+sin4xsin4xsin4x+cos4xdx=π20π2sin4xsin4x+cos4xdxbutchangementx=π2tgive0π2sin4xsin4x+cos4xdx=0π2cos4tcos4x+sin4xdt=I2I=π2I=π4.

Answered by tanmay.chaudhury50@gmail.com last updated on 28/Aug/18

I=∫_0 ^(Π/2) f(x)dx=∫_0 ^(Π/4) f((Π/2)−x)dx  I=∫_0 ^(Π/2) ((cos^4 x)/(sin^4 x+cos^4 x))dx=∫_0 ^(Π/4) ((cos^4 ((Π/2)−x))/(sin^4 ((Π/2)−x)+cos^4 ((Π/2)−x)))dx  I=∫_0 ^(Π/2) ((sin^4 x)/(cos^4 x+sin^4 x))dx  2I=∫_0 ^(Π/2) ((cos^4 x+sin^4 x)/(cos^4 x+sin^4 x))dx=∫_0 ^(Π/2)  dx  2I=∣x∣_0 ^(Π/2) =(Π/2)  I=(Π/4)

I=0Π2f(x)dx=0Π4f(Π2x)dxI=0Π2cos4xsin4x+cos4xdx=0Π4cos4(Π2x)sin4(Π2x)+cos4(Π2x)dxI=0Π2sin4xcos4x+sin4xdx2I=0Π2cos4x+sin4xcos4x+sin4xdx=0Π2dx2I=∣x0Π2=Π2I=Π4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com