Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42603 by maxmathsup by imad last updated on 28/Aug/18

let f(x) =∫_0 ^1 ln(1+ixt)dt  calculate f^, (x)    (x from R).

letf(x)=01ln(1+ixt)dtcalculatef,(x)(xfromR).

Commented by prof Abdo imad last updated on 29/Aug/18

we have 1+ixt =(√(1+x^2 t^2 ))((1/(√(1+x^2 t^2 ))) +i((xt)/(√(1+x^2 t^2 ))))  =r e^(iθ)  ⇒r=(√(1+x^2 t^2 )) and cosθ =(1/(√(1+x^2 t^2 )))  sinθ =((xt)/(√(1+x^2 t^2 ))) ⇒tanθ =xt ⇒θ=arctan(xt)⇒  ln(1+xt) =ln(r)+iθ =(1/2)ln(1+x^2 t^2 )+i arctan(xt)  ⇒f(x)=(1/2)∫_0 ^1  ln(1+x^2 t^2 )dt +i ∫_0 ^1  arctan(xt)dt⇒  f^′ (x)=(1/2) ∫_0 ^1 ((2xt^2 )/(1+x^2 t^2 ))dt  +i ∫_0 ^1   (t/(1+x^2 t^2 ))dt .  = ∫_0 ^1    ((xt^2 )/(1+x^2 t^2 )) dt  +i  ∫_0 ^1   (t/(1+x^2 t^2 ))dt but for x≠0  ∫_0 ^1   ((xt^2 )/(1+x^2 t^2 )) dt =(1/x) ∫_0 ^1  ((x^2 t^2  +1−1)/(1+x^2 t^2 ))dt  =(1/x) −(1/x) ∫_0 ^1    (dt/(1+x^2 t^2 )) =_(xt =u)  (1/x) −(1/x)∫_0 ^x    (1/(1+u^2 ))(du/x)  =(1/x) −(1/x^2 ) arctan(x)  also  ∫_0 ^1     (t/(1+x^2 t^2 )) dt =_(xt =u)   ∫_0 ^x      (u/(x(1+u^2 ))) (du/x)  =(1/x^2 ) ∫_0 ^x   (u/(1+u^2 ))du =(1/(2x^2 ))ln∣1+x^2 ∣ ⇒  f^′ (x)=(1/x) −((arctanx)/x^2 )  +i{(1/(2x^2 ))ln(1+x^2 } .

wehave1+ixt=1+x2t2(11+x2t2+ixt1+x2t2)=reiθr=1+x2t2andcosθ=11+x2t2sinθ=xt1+x2t2tanθ=xtθ=arctan(xt)ln(1+xt)=ln(r)+iθ=12ln(1+x2t2)+iarctan(xt)f(x)=1201ln(1+x2t2)dt+i01arctan(xt)dtf(x)=12012xt21+x2t2dt+i01t1+x2t2dt.=01xt21+x2t2dt+i01t1+x2t2dtbutforx001xt21+x2t2dt=1x01x2t2+111+x2t2dt=1x1x01dt1+x2t2=xt=u1x1x0x11+u2dux=1x1x2arctan(x)also01t1+x2t2dt=xt=u0xux(1+u2)dux=1x20xu1+u2du=12x2ln1+x2f(x)=1xarctanxx2+i{12x2ln(1+x2}.

Commented by prof Abdo imad last updated on 29/Aug/18

another method by complex derovation  f^′ (x) =∫_0 ^1   (∂/∂x)(ln(1+ixt))dt  = ∫_0 ^1    ((it)/(1+ixt))dt =∫_0 ^1   ((it(1−ixt))/(1+x^2 t^2 ))dt  = ∫_0 ^1    ((xt^2 )/(1+x^2 t^2 ))dt +i ∫_0 ^1   ((tdt)/(1+x^2 t^2 )) =....

anothermethodbycomplexderovationf(x)=01x(ln(1+ixt))dt=01it1+ixtdt=01it(1ixt)1+x2t2dt=01xt21+x2t2dt+i01tdt1+x2t2=....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com