Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42605 by maxmathsup by imad last updated on 28/Aug/18

let f(x) = ∫_(−∞) ^(+∞)    ((arctan (xt^2 ))/(1+2t^2 ))dt  1) find a explicite form of f(x)  2) calculate ∫_0 ^∞     ((arctan(t^2 ))/(1+2t^2 ))dt  and ∫_0 ^∞     ((arctan(2t^2 ))/(1+2t^2 ))dt

letf(x)=+arctan(xt2)1+2t2dt1)findaexpliciteformoff(x)2)calculate0arctan(t2)1+2t2dtand0arctan(2t2)1+2t2dt

Commented by maxmathsup by imad last updated on 30/Aug/18

1) we have f^′ (x) = ∫_(−∞) ^(+∞)    (t^2 /((1+x^2 t^4 )(1+2t^2 )))dt  let   ϕ(z) = (z^2 /((1 +x^2 z^4 )(1+2z^2 )))  we have  ϕ(z) = (z^2 /((xz^2 −i)(xz^2 +i)((√2)z−i)((√2)z+i))) =(z^2 /(2x^2 (z^2 −(i/x))(z^2  +(i/x))(z−(i/(√2)))(z+(i/(√2)))))  (x>0)  = (z^2 /(2x^2 (z−(1/(√x))e^((iπ)/4) )(z+(1/(√x))e^((iπ)/4) )(z−(1/(√x))e^(−((iπ)/4)) )(z+(1/(√x))e^(−((iπ)/4)) )(z−(i/(√2)))(z+(i/(√2))))) so the  poles of ϕ are +^−  (1/(√x)) e^((iπ)/4)   , +^−  (1/(√x))e^(−((iπ)/4))    and +^−  (i/(√2))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ { Res(ϕ,(1/(√x))e^((iπ)/4) ) +Res(ϕ,−(1/(√x)) e^(−((iπ)/4)) ) +Res(ϕ,(i/(√2)))}  Res(ϕ,(e^((iπ)/4) /(√x)))  = (i/(2x^3 ((2/(√x))e^((iπ)/4) )(((2i)/x))(1+((2i)/x)))) =   ((x^2 (√x))/(8 x^3 (x+2i))) e^(−((iπ)/4))   = ((√x)/(8x(x+2i))) e^(−((iπ)/4))   Res(ϕ,−(e^(−((iπ)/4)) /(√x))) = ((−i)/(2x^3 (((−2)/(√x)) e^(−((iπ)/4)) )(((−2i)/(√x)))(1−((2i)/x)))) =−((√x)/(8x(x−2i))) e^((iπ)/4)   Res(ϕ,(i/(√2))) = ((−1)/(4x^2 (((2i)/(√2)))(−(1/2)−(i/x))(−(1/2) +(i/x)))) = ((−1)/(4i(√2)x^2 ((1/4)+(1/x^2 ))))  =((−1)/(i(√2)(4x^2 )(((x^2  +4)/(4x^2 ))))) = (i/((√2)(x^2  +4))) ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ {  ((x^2 (√x))/(8x(x+2i))) e^(−((iπ)/4))   −((√x)/(8x(x−2i))) e^((iπ)/4)    +(i/((√2)(x^2  +4)))}  ....be continued...

1)wehavef(x)=+t2(1+x2t4)(1+2t2)dtletφ(z)=z2(1+x2z4)(1+2z2)wehaveφ(z)=z2(xz2i)(xz2+i)(2zi)(2z+i)=z22x2(z2ix)(z2+ix)(zi2)(z+i2)(x>0)=z22x2(z1xeiπ4)(z+1xeiπ4)(z1xeiπ4)(z+1xeiπ4)(zi2)(z+i2)sothepolesofφare+1xeiπ4,+1xeiπ4and+i2+φ(z)dz=2iπ{Res(φ,1xeiπ4)+Res(φ,1xeiπ4)+Res(φ,i2)}Res(φ,eiπ4x)=i2x3(2xeiπ4)(2ix)(1+2ix)=x2x8x3(x+2i)eiπ4=x8x(x+2i)eiπ4Res(φ,eiπ4x)=i2x3(2xeiπ4)(2ix)(12ix)=x8x(x2i)eiπ4Res(φ,i2)=14x2(2i2)(12ix)(12+ix)=14i2x2(14+1x2)=1i2(4x2)(x2+44x2)=i2(x2+4)+φ(z)dz=2iπ{x2x8x(x+2i)eiπ4x8x(x2i)eiπ4+i2(x2+4)}....becontinued...

Commented by maxmathsup by imad last updated on 30/Aug/18

∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ (−2i Im (((√x)/(8x(x−2i))) e^((iπ)/4) )) −((2π)/((√2)(x^2  +4)))  =4π Im(((√x)/(8x(x−2i))) e^((iπ)/4) ) −((2π)/((√2)(x^2  +4))) =((π(√x))/(2x)) Im((e^((iπ)/4) /(x−2i)))−((2π)/((√2)(x^2 +4))) but  (e^((iπ)/4) /(x−2i)) =(((x+2i) e^((iπ)/4) )/(x^2  +4)) =(((x+2i)((1/(√2)) +(i/(√2))))/(x^2  +4)) =(1/(√2))  (((x+2i)(1+i))/((x^2  +4)))  =(1/(√2)) ((x+ix +2i −2)/(x^2  +4)) =(1/(√2)) ((x−2 +i(x+2))/(x^2  +4)) ⇒Im(...) =((x+2)/((√2)(x^2  +4))) ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz  =((π(√x))/(2x)) ((x+2)/((√2)(x^2  +4))) −((2π)/((√2)(x^2  +4))) =f^′ (x)  ⇒  f^′ (x) = (π/(2(√2)(√x))) ((x+2)/((x^2  +4))) −((2π)/((√2)(x^2  +4))) ⇒f(x) =(π/(2(√2))) ∫   ((x+2)/((√x)(x^2  +4))) −π(√2)∫ (dx/(x^2  +4)) +c

+φ(z)dz=2iπ(2iIm(x8x(x2i)eiπ4))2π2(x2+4)=4πIm(x8x(x2i)eiπ4)2π2(x2+4)=πx2xIm(eiπ4x2i)2π2(x2+4)buteiπ4x2i=(x+2i)eiπ4x2+4=(x+2i)(12+i2)x2+4=12(x+2i)(1+i)(x2+4)=12x+ix+2i2x2+4=12x2+i(x+2)x2+4Im(...)=x+22(x2+4)+φ(z)dz=πx2xx+22(x2+4)2π2(x2+4)=f(x)f(x)=π22xx+2(x2+4)2π2(x2+4)f(x)=π22x+2x(x2+4)π2dxx2+4+c

Commented by maxmathsup by imad last updated on 30/Aug/18

changement (√x) =tgive ∫   ((x+2)/((√x)(x^2  +4)))dx =∫   ((t^2  +2)/(t(t^4  +4)))(2t)dt  = ∫   ((2t^2  +4)/(t^4  +4)) dt ⇒f(x) = ∫   ((2t^2  +4)/(t^4  +4))dt−π arctanx +c ...be continued...

changementx=tgivex+2x(x2+4)dx=t2+2t(t4+4)(2t)dt=2t2+4t4+4dtf(x)=2t2+4t4+4dtπarctanx+c...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com