Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 42624 by ajfour last updated on 29/Aug/18

Commented by ajfour last updated on 29/Aug/18

The smaller circle has radius r.  The two parabolas are reflection  of one another in x-axis.  Equation of upper parabola is   y=ax^2 +r . Find radius R of   larger circle in terms of a, r .

$${The}\:{smaller}\:{circle}\:{has}\:{radius}\:\boldsymbol{{r}}. \\ $$$${The}\:{two}\:{parabolas}\:{are}\:{reflection} \\ $$$${of}\:{one}\:{another}\:{in}\:{x}-{axis}. \\ $$$${Equation}\:{of}\:{upper}\:{parabola}\:{is} \\ $$$$\:{y}={ax}^{\mathrm{2}} +{r}\:.\:{Find}\:{radius}\:\boldsymbol{{R}}\:{of}\: \\ $$$${larger}\:{circle}\:{in}\:{terms}\:{of}\:\boldsymbol{{a}},\:\boldsymbol{{r}}\:. \\ $$

Commented by MJS last updated on 02/Sep/18

parabola^+ =P^+ : y=ax^2 +r  red circle^+ =C^+ : y=(√(R^2 −(x−(R+r))^2 ))    1. attempt  P^+ ∩C^+  must have exactly one real solution  2. attempt  tangent of P^+  = tangent of C^+   3. attempt  normal of P^+  = normal of C^+  must intersect  x−axis at x=R+r    all of these lead to polynomes of 3^(rd)  or 4^(th)  degree  which we cannot solve generally (too many  parameters)    so I tried something different:  given are the circles  C_1 : x^2 +y^2 =1  C_2 : (x−(r+1))^2 +y^2 =r^2   find the parabola P: y=ax^2 +1 touching C_2   in exactly one point ⇔ P and C_2  have a common  tangent in T= ((t),((at^2 +1)) )= ((t),((√(r^2 −(t−(r+1))^2 ))) )  this also leads to a polynome of 4^(th)  degree  which can be generally solved; the “usual”  complicated solution using  (t−α−(√β))(t−α+(√β))(t−γ−(√δ)i)(t−γ+(√δ)i)=0  with only one of the real pair α±(√β) solving  the original unsquared equation  we can approximately solve for t with any  given r and then easily get a.  r>1 ⇔ a>0  r=1 ⇔ a=0 (P degenerates into the line y=1)  r<1 ⇔ a<0  interestingly this has got at least one solution  with r, t, a ∈Q: r=(5/(27)) t=(4/3) a=−(1/2)  will post later

$${parabola}^{+} =\mathcal{P}^{+} :\:{y}={ax}^{\mathrm{2}} +{r} \\ $$$${red}\:{circle}^{+} =\mathcal{C}^{+} :\:{y}=\sqrt{{R}^{\mathrm{2}} −\left({x}−\left({R}+{r}\right)\right)^{\mathrm{2}} } \\ $$$$ \\ $$$$\mathrm{1}.\:\mathrm{attempt} \\ $$$$\mathcal{P}^{+} \cap\mathcal{C}^{+} \:\mathrm{must}\:\mathrm{have}\:\mathrm{exactly}\:\mathrm{one}\:\mathrm{real}\:\mathrm{solution} \\ $$$$\mathrm{2}.\:\mathrm{attempt} \\ $$$$\mathrm{tangent}\:\mathrm{of}\:\mathcal{P}^{+} \:=\:\mathrm{tangent}\:\mathrm{of}\:\mathcal{C}^{+} \\ $$$$\mathrm{3}.\:\mathrm{attempt} \\ $$$$\mathrm{normal}\:\mathrm{of}\:\mathcal{P}^{+} \:=\:\mathrm{normal}\:\mathrm{of}\:\mathcal{C}^{+} \:\mathrm{must}\:\mathrm{intersect} \\ $$$${x}−\mathrm{axis}\:\mathrm{at}\:{x}={R}+{r} \\ $$$$ \\ $$$$\mathrm{all}\:\mathrm{of}\:\mathrm{these}\:\mathrm{lead}\:\mathrm{to}\:\mathrm{polynomes}\:\mathrm{of}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{or}\:\mathrm{4}^{\mathrm{th}} \:\mathrm{degree} \\ $$$$\mathrm{which}\:\mathrm{we}\:\mathrm{cannot}\:\mathrm{solve}\:\mathrm{generally}\:\left(\mathrm{too}\:\mathrm{many}\right. \\ $$$$\left.\mathrm{parameters}\right) \\ $$$$ \\ $$$$\mathrm{so}\:\mathrm{I}\:\mathrm{tried}\:\mathrm{something}\:\mathrm{different}: \\ $$$$\mathrm{given}\:\mathrm{are}\:\mathrm{the}\:\mathrm{circles} \\ $$$$\mathcal{C}_{\mathrm{1}} :\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathcal{C}_{\mathrm{2}} :\:\left({x}−\left({r}+\mathrm{1}\right)\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{parabola}\:\mathcal{P}:\:{y}={ax}^{\mathrm{2}} +\mathrm{1}\:\mathrm{touching}\:\mathcal{C}_{\mathrm{2}} \\ $$$$\mathrm{in}\:\mathrm{exactly}\:\mathrm{one}\:\mathrm{point}\:\Leftrightarrow\:\mathcal{P}\:\mathrm{and}\:\mathcal{C}_{\mathrm{2}} \:\mathrm{have}\:\mathrm{a}\:\mathrm{common} \\ $$$$\mathrm{tangent}\:\mathrm{in}\:\mathcal{T}=\begin{pmatrix}{{t}}\\{{at}^{\mathrm{2}} +\mathrm{1}}\end{pmatrix}=\begin{pmatrix}{{t}}\\{\sqrt{{r}^{\mathrm{2}} −\left({t}−\left({r}+\mathrm{1}\right)\right)^{\mathrm{2}} }}\end{pmatrix} \\ $$$$\mathrm{this}\:\mathrm{also}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{a}\:\mathrm{polynome}\:\mathrm{of}\:\mathrm{4}^{\mathrm{th}} \:\mathrm{degree} \\ $$$$\mathrm{which}\:\mathrm{can}\:\mathrm{be}\:\mathrm{generally}\:\mathrm{solved};\:\mathrm{the}\:``\mathrm{usual}'' \\ $$$$\mathrm{complicated}\:\mathrm{solution}\:\mathrm{using} \\ $$$$\left({t}−\alpha−\sqrt{\beta}\right)\left({t}−\alpha+\sqrt{\beta}\right)\left({t}−\gamma−\sqrt{\delta}\mathrm{i}\right)\left({t}−\gamma+\sqrt{\delta}\mathrm{i}\right)=\mathrm{0} \\ $$$$\mathrm{with}\:\mathrm{only}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{real}\:\mathrm{pair}\:\alpha\pm\sqrt{\beta}\:\mathrm{solving} \\ $$$$\mathrm{the}\:\mathrm{original}\:\mathrm{unsquared}\:\mathrm{equation} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{approximately}\:\mathrm{solve}\:\mathrm{for}\:{t}\:\mathrm{with}\:\mathrm{any} \\ $$$$\mathrm{given}\:{r}\:\mathrm{and}\:\mathrm{then}\:\mathrm{easily}\:\mathrm{get}\:{a}. \\ $$$${r}>\mathrm{1}\:\Leftrightarrow\:{a}>\mathrm{0} \\ $$$${r}=\mathrm{1}\:\Leftrightarrow\:{a}=\mathrm{0}\:\left(\mathcal{P}\:\mathrm{degenerates}\:\mathrm{into}\:\mathrm{the}\:\mathrm{line}\:{y}=\mathrm{1}\right) \\ $$$${r}<\mathrm{1}\:\Leftrightarrow\:{a}<\mathrm{0} \\ $$$$\mathrm{interestingly}\:\mathrm{this}\:\mathrm{has}\:\mathrm{got}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{solution} \\ $$$$\mathrm{with}\:{r},\:{t},\:{a}\:\in\mathbb{Q}:\:{r}=\frac{\mathrm{5}}{\mathrm{27}}\:{t}=\frac{\mathrm{4}}{\mathrm{3}}\:{a}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{will}\:\mathrm{post}\:\mathrm{later} \\ $$

Answered by ajfour last updated on 03/Sep/18

eq. of parabola      y = ax^2 +r   P(x_1 , y_1 )  eq. of larger circle  (R+r−x)^2 +y^2 = R^2   distance of P from centre of  larger circle is R  ⇒ R^2 =(R+r−x)^2 +(ax^2 +r)^2   2R((dR/dx))=2(R+r−x)((dR/dx)−1)+                                2(ax^2 +r)(2ax)  As R is minimum,  (dR/dx) must be zero:  ⇒ R+r−x = 2ax(ax^2 +r)  ⇒  x = f(R)  ⇒  R^2 =[R+r−f(R)]^2 +{a[f(R)]^2 +r}^2   R is then obtained from above eq.  ________________________

$${eq}.\:{of}\:{parabola}\:\:\:\:\:\:{y}\:=\:{ax}^{\mathrm{2}} +{r} \\ $$$$\:{P}\left({x}_{\mathrm{1}} ,\:{y}_{\mathrm{1}} \right) \\ $$$${eq}.\:{of}\:{larger}\:{circle} \\ $$$$\left({R}+{r}−{x}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} =\:{R}^{\mathrm{2}} \\ $$$${distance}\:{of}\:{P}\:{from}\:{centre}\:{of} \\ $$$${larger}\:{circle}\:{is}\:{R} \\ $$$$\Rightarrow\:{R}^{\mathrm{2}} =\left({R}+{r}−{x}\right)^{\mathrm{2}} +\left({ax}^{\mathrm{2}} +{r}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{R}\left(\frac{{dR}}{{dx}}\right)=\mathrm{2}\left({R}+{r}−{x}\right)\left(\frac{{dR}}{{dx}}−\mathrm{1}\right)+ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\left({ax}^{\mathrm{2}} +{r}\right)\left(\mathrm{2}{ax}\right) \\ $$$${As}\:{R}\:{is}\:{minimum},\:\:\frac{{dR}}{{dx}}\:{must}\:{be}\:{zero}: \\ $$$$\Rightarrow\:{R}+{r}−{x}\:=\:\mathrm{2}{ax}\left({ax}^{\mathrm{2}} +{r}\right) \\ $$$$\Rightarrow\:\:{x}\:=\:{f}\left({R}\right) \\ $$$$\Rightarrow\:\:{R}^{\mathrm{2}} =\left[{R}+{r}−{f}\left({R}\right)\right]^{\mathrm{2}} +\left\{{a}\left[{f}\left({R}\right)\right]^{\mathrm{2}} +{r}\right\}^{\mathrm{2}} \\ $$$${R}\:{is}\:{then}\:{obtained}\:{from}\:{above}\:{eq}. \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com