Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42631 by maxmathsup by imad last updated on 29/Aug/18

let f(x)=2(√(x−1)) −2x  1) find D_f   2) study the variation of f(x)  3 ) calculate  ∫_1 ^3  f(x)dx  4) determine f^(−1) (x) and calculate   ∫_1 ^3  f^(−1) (x)dx  5)  find the values of  A =  ∫_1 ^3    ((f(x))/(f^(−1) (x)dx)) and   B = ((∫_1 ^3   f(x))/(∫_1 ^3  f^(−1) (x))) dx.

letf(x)=2x12x1)findDf2)studythevariationoff(x)3)calculate13f(x)dx4)determinef1(x)andcalculate13f1(x)dx5)findthevaluesofA=13f(x)f1(x)dxandB=13f(x)13f1(x)dx.

Commented by bbnnftm833 last updated on 30/Aug/18

we need the solution

weneedthesolution

Commented by maxmathsup by imad last updated on 31/Aug/18

1) x∈ D_f  ⇔ x−1≥0 ⇒D_f =[1,+∞[  2)lim_(x→+∞)  f(x)  =lim_(x→+∞)  2x( (√((x−1)/x^2 )) −1)=lim_(x→+∞) 2x((√((1/x)−(1/x^2 )))−1)  =lim_(x→+∞)  −2x =−∞  we have f^′ (x)= (1/(√(x−1))) −2 for x>1 ⇒f^′ (x)=((1−2(√(x−1)))/(√(x−1)))  f^′ (x)=0 ⇔ 2(√(x−1))=1 ⇔(√(x−1))=(1/2) ⇔x−1=(1/4) ⇔x =(5/4)  f^′ (x)>0 ⇔ 1−2(√(x−1))>0 ⇔2(√(x−1))<1 ⇔ 1<x<(5/4)  f^′ (x)<0 ⇔ x>(5/4)  x_            1                 (5/4)            +∞  f^′ (x)              +                 −  f(x)    −2     inc  −(3/2)               decr                                        f(1)=−2     f((5/4))=2(√((5/4)−1))−2(5/4)  =1−(5/2) =−(3/2)

1)xDfx10Df=[1,+[2)limx+f(x)=limx+2x(x1x21)=limx+2x(1x1x21)=limx+2x=wehavef(x)=1x12forx>1f(x)=12x1x1f(x)=02x1=1x1=12x1=14x=54f(x)>012x1>02x1<11<x<54f(x)<0x>54x154+f(x)+f(x)2inc32decrf(1)=2f(54)=2541254=152=32

Commented by maxmathsup by imad last updated on 31/Aug/18

3) ∫_1 ^3  f(x)dx = ∫_1 ^3  {2(√(x−1))−2x}dx = 2 [(2/3)(x−1)^(3/2) ]_1 ^3 −  [x^2 ]_1 ^3   =(4/3){ 2^(3/2) } −(9−1) = (4/3)(√2^3 )  −8  =(4/3)(2(√2)) −8 =((8(√2))/3) −8 .

3)13f(x)dx=13{2x12x}dx=2[23(x1)32]13[x2]13=43{232}(91)=43238=43(22)8=8238.

Commented by maxmathsup by imad last updated on 31/Aug/18

4)  f(x)=y ⇔ x =f^(−1) (y)   and f(x)=y ⇒2(√(x−1))−2x=y   (x≥1) ⇒  2(√(x−1)) =2x+y ⇒ 4(x−1) =(2x+y)^2  ⇒4x−4 =4x^2  +4xy +y^2  ⇒  4x^2  +4xy +y^2  −4x+4 =0 ⇒ 4x^2  +4(y−1)x +y^2  +4 =0  Δ^′  =4(y−1)^2  −4(y^2  +4) =4y^2  −8y +4 −4y^2  −16 =−8y −12   this equation have solution ⇔−8y−12≥0 ⇔8y +12≤0 ⇔y ≤((−12)/8)(=−(3/2))  x_1 =((−2(y−1)+(√(−8y−12)))/4) =((−(y−1) +(√(−2y−3)))/2)  x_2 =((−(y−1)−(√(−2y−3)))/2)   x_1 −1 =((1−y +(√(−2y−3)))/2) −1 =((−1−y +(√(−2y −3)))/2)  but  y≤−(3/2) ⇒−y≥(3/2) ⇒−1−y ≥(1/2) ≥0 ⇒x_1 −1≥0  no need to verify x_2   ⇒f^(−1) (y) =((1−y +(√(−2y−3)))/2)  ⇒f^(−1) (x) =((1−x+(√(−2x−3)))/2)  with x≤−(3/2) .

4)f(x)=yx=f1(y)andf(x)=y2x12x=y(x1)2x1=2x+y4(x1)=(2x+y)24x4=4x2+4xy+y24x2+4xy+y24x+4=04x2+4(y1)x+y2+4=0Δ=4(y1)24(y2+4)=4y28y+44y216=8y12thisequationhavesolution8y1208y+120y128(=32)x1=2(y1)+8y124=(y1)+2y32x2=(y1)2y32x11=1y+2y321=1y+2y32buty32y321y120x110noneedtoverifyx2f1(y)=1y+2y32f1(x)=1x+2x32withx32.

Commented by maxmathsup by imad last updated on 31/Aug/18

4) forgive  the Q is calculate ∫_(−3) ^(−2)  f^(−1) (x)dx  5) the Q is find the value of  A = ((∫_2 ^3  f(x)dx)/(∫_(−3) ^(−2)  f^(−1) (x)dx))  B =  ∫     ((f(x))/(f^(−1) (x)))dx .

4)forgivetheQiscalculate32f1(x)dx5)theQisfindthevalueofA=23f(x)dx32f1(x)dxB=f(x)f1(x)dx.

Commented by maxmathsup by imad last updated on 31/Aug/18

4) we have f^(−1) (x)=((1−x+(√(−2x−3)))/2) ⇒  ∫_(−3) ^(−2)   f^(−1) (x)dx =(1/2) ∫_(−3) ^(−2) (1−x) +(1/2) ∫_(−3) ^(−2)  (√(−2x−3))dx  but    ∫_(−3) ^(−2) (1−x)dx =[x−(x^2 /2)]_(−3) ^(−2)   =−2−2−(−3−(9/2))=−1 +(9/2) =(7/2)   and  ∫_(−3) ^(−2)  (√(−2x−3))dx =[−(1/3)(−2x−3)^(3/2) ]_(−3) ^(−2)  =−(1/3){1−(3)^(3/2) }  =(√3) −(1/3) ⇒∫_(−3) ^(−2)  f^(−1) (x)dx = (7/4)  +((√3)/2) −(1/6) =((38)/(24)) +((√3)/2) =((19)/(12)) +((√3)/2)

4)wehavef1(x)=1x+2x3232f1(x)dx=1232(1x)+12322x3dxbut32(1x)dx=[xx22]32=22(392)=1+92=72and322x3dx=[13(2x3)32]32=13{1(3)32}=31332f1(x)dx=74+3216=3824+32=1912+32

Commented by maxmathsup by imad last updated on 31/Aug/18

5) we have  ∫_2 ^3  f(x)dx = 2 ∫_2 ^3  (√(x−1)) −∫_2 ^3  2x dx   =2[(2/3)(x−1)^(3/2) ]_2 ^3  −[x^2 ]_2 ^3    =(4/3){ 2^(3/2)  −1}−{9−4}  =(4/3)(2(√2)) −5 =((8(√2))/3) −5  also we have  ∫_(−3) ^(−2)   f^(−1) (x)dx =((19)/(12)) +((√3)/2) ⇒  A = ((∫_2 ^3  f(x)dx)/(∫_(−3) ^(−2)  f^(−1) (x)dx)) = ((((8(√2))/3)−5)/(((19)/(12)) +((√3)/2))) .

5)wehave23f(x)dx=223x1232xdx=2[23(x1)32]23[x2]23=43{2321}{94}=43(22)5=8235alsowehave32f1(x)dx=1912+32A=23f(x)dx32f1(x)dx=82351912+32.

Answered by behi83417@gmail.com last updated on 30/Aug/18

1)x−1≥0⇒x≥1⇒D_f =[1,+∞)  2)y=2(√(x−1))−2x  y′=(1/(√(x−1)))−2⇒x≠1⇒D_f =(1,+∞)  x−1=t^2 ⇒x=t^2 +1  f(t)=2t−2(t^2 +1)=−2(t^2 −t+1)  ⇒t^2 −t+1=((−y)/2)⇒(t−(1/2))^2 =((−y)/2)−(3/4)  ⇒t−(1/2)=±(√(−((2y+3)/4)))⇒t=(1/2)(1±(√(−2y−3)))  ⇒(√(x−1))=(1/2)(1±(√(−2y−3)))  ⇒x=1+(1/4)(1±(√(−2y−3)))^2   ⇒f^(−1) (x)=1+(1/4)(1±(√(−2x−3)))^2   −2y−3≥0⇒2y+3≤0⇒y≤−(3/2)  ⇒R_f =(−∞,−(3/2)].  3)∫_1 ^3 f(x)dx=∫_1 ^3 (2(√(x−1))−2x)dx=  =[(4/3)(x−1)^(3/2) −x^2 ]_1 ^3 =8(((√2)/3)−1).  4)∫f^(−1) (x)dx=∫[1+(1/4)(1±(√(−2x−3)))^2 ]dx=  =∫[1+(1/4)(1∓(2x+3)±2(√(−2x−3)))]dx  I_1 =∫[1+(1/4)(2x+4+2(√(−2x−3)))]dx=  =(1/2)(2x+(((x+1)^2 )/2)−(1/3)(−2x−3)^(3/2) )_1 ^3 =  =(1/2)[6+8−27i−2−2+((i(√5))/3)]=  =5−((81−(√5))/6).i

1)x10x1Df=[1,+)2)y=2x12xy=1x12x1Df=(1,+)x1=t2x=t2+1f(t)=2t2(t2+1)=2(t2t+1)t2t+1=y2(t12)2=y234t12=±2y+34t=12(1±2y3)x1=12(1±2y3)x=1+14(1±2y3)2f1(x)=1+14(1±2x3)22y302y+30y32Rf=(,32].3)31f(x)dx=31(2x12x)dx=Missing \left or extra \right4)f1(x)dx=[1+14(1±2x3)2]dx==[1+14(1(2x+3)±22x3)]dxI1=[1+14(2x+4+22x3)]dx=Missing \left or extra \right=12[6+827i22+i53]==58156.i

Terms of Service

Privacy Policy

Contact: info@tinkutara.com