Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 4266 by Rasheed Soomro last updated on 06/Jan/16

Analyze for  integer solution :  a,b,c are fixed positive integers.  ax^a +by^b =cz^c

$$\mathrm{Analyze}\:\mathrm{for}\:\:\mathrm{integer}\:\mathrm{solution}\:: \\ $$$$\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{are}\:\mathrm{fixed}\:\mathrm{positive}\:\mathrm{integers}. \\ $$$$\mathrm{ax}^{\mathrm{a}} +\mathrm{by}^{\mathrm{b}} =\mathrm{cz}^{\mathrm{c}} \\ $$

Commented by Yozzii last updated on 06/Jan/16

If (x,y,z)=(n^(1/a) ,j^(1/b) ,k^(1/c) ), where  n,j and k are the a−th,b−th & c−th  powers of positive integers,respectively, then  the equation ax^a +by^b =cz^c  reduces to    an+bj=ck.  an+bj−ck=0   ⇒(a/c)n+(b/c)j=k

$${If}\:\left({x},{y},{z}\right)=\left({n}^{\mathrm{1}/{a}} ,{j}^{\mathrm{1}/{b}} ,{k}^{\mathrm{1}/{c}} \right),\:{where} \\ $$$${n},{j}\:{and}\:{k}\:{are}\:{the}\:{a}−{th},{b}−{th}\:\&\:{c}−{th} \\ $$$${powers}\:{of}\:{positive}\:{integers},{respectively},\:{then} \\ $$$${the}\:{equation}\:{ax}^{{a}} +{by}^{{b}} ={cz}^{{c}} \:{reduces}\:{to}\:\: \\ $$$${an}+{bj}={ck}. \\ $$$${an}+{bj}−{ck}=\mathrm{0}\: \\ $$$$\Rightarrow\frac{{a}}{{c}}{n}+\frac{{b}}{{c}}{j}={k} \\ $$

Commented by prakash jain last updated on 06/Jan/16

a=b=c=1  x+y=z  a=b=c=2  pythogorean triples  a=b=c≥3 no solution

$${a}={b}={c}=\mathrm{1} \\ $$$${x}+{y}={z} \\ $$$${a}={b}={c}=\mathrm{2} \\ $$$${pythogorean}\:{triples} \\ $$$${a}={b}={c}\geqslant\mathrm{3}\:\mathrm{no}\:\mathrm{solution} \\ $$

Commented by Rasheed Soomro last updated on 13/Jan/16

ax^a +by^b =cz^c   For a=1,b=2 and c=3  x+2y^2 =3z^3   x=3z^3 −2y^2   Take values of y and z so that  3z^3 >2y^2   For example  x=6,y=3,z=2  (6+2(3)^2 =3(2)^3   6+18=24  24=24)  For a=2,b=3 and c=4  2x^2 +3y^3 =4z^4   2x^2 +3y^3   ∈ E ∧ 2x^2 ∈ E  ⇒3y^3  ∈ E ⇒y∈E  For y=0  2x^2 =4z^4   (x^2 /z^4 )=(4/2)=2  For y=0 no integer x,z  For y=2  2x^2 +24=4z^4   2z^4 −x^2 =12  The above equation is quadratic   in x^2  and it can be shown that  even x^2  is not integer.  We have narrowed search  to y to be even numbers.

$$\mathrm{ax}^{\mathrm{a}} +\mathrm{by}^{\mathrm{b}} =\mathrm{cz}^{\mathrm{c}} \\ $$$${For}\:\mathrm{a}=\mathrm{1},\mathrm{b}=\mathrm{2}\:\mathrm{and}\:\mathrm{c}=\mathrm{3} \\ $$$${x}+\mathrm{2}{y}^{\mathrm{2}} =\mathrm{3}{z}^{\mathrm{3}} \\ $$$${x}=\mathrm{3}{z}^{\mathrm{3}} −\mathrm{2}{y}^{\mathrm{2}} \\ $$$${Take}\:{values}\:{of}\:{y}\:{and}\:{z}\:{so}\:{that} \\ $$$$\mathrm{3}{z}^{\mathrm{3}} >\mathrm{2}{y}^{\mathrm{2}} \\ $$$${For}\:{example} \\ $$$$\mathrm{x}=\mathrm{6},{y}=\mathrm{3},{z}=\mathrm{2} \\ $$$$\left(\mathrm{6}+\mathrm{2}\left(\mathrm{3}\right)^{\mathrm{2}} =\mathrm{3}\left(\mathrm{2}\right)^{\mathrm{3}} \right. \\ $$$$\mathrm{6}+\mathrm{18}=\mathrm{24} \\ $$$$\left.\mathrm{24}=\mathrm{24}\right) \\ $$$${For}\:\mathrm{a}=\mathrm{2},\mathrm{b}=\mathrm{3}\:{and}\:{c}=\mathrm{4} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{3}} =\mathrm{4}{z}^{\mathrm{4}} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{3}} \:\:\in\:\mathbb{E}\:\wedge\:\mathrm{2}{x}^{\mathrm{2}} \in\:\mathbb{E} \\ $$$$\Rightarrow\mathrm{3}{y}^{\mathrm{3}} \:\in\:\mathbb{E}\:\Rightarrow{y}\in\mathbb{E} \\ $$$${For}\:{y}=\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} =\mathrm{4}{z}^{\mathrm{4}} \\ $$$$\frac{{x}^{\mathrm{2}} }{{z}^{\mathrm{4}} }=\frac{\mathrm{4}}{\mathrm{2}}=\mathrm{2} \\ $$$${For}\:{y}=\mathrm{0}\:{no}\:{integer}\:{x},{z} \\ $$$${For}\:{y}=\mathrm{2} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{24}=\mathrm{4}{z}^{\mathrm{4}} \\ $$$$\mathrm{2}{z}^{\mathrm{4}} −{x}^{\mathrm{2}} =\mathrm{12} \\ $$$${The}\:{above}\:{equation}\:{is}\:{quadratic}\: \\ $$$${in}\:{x}^{\mathrm{2}} \:{and}\:{it}\:{can}\:{be}\:{shown}\:{that} \\ $$$${even}\:{x}^{\mathrm{2}} \:{is}\:{not}\:{integer}. \\ $$$${We}\:{have}\:{narrowed}\:{search} \\ $$$${to}\:{y}\:{to}\:{be}\:{even}\:{numbers}. \\ $$

Answered by Rasheed Soomro last updated on 11/Jan/16

ax^a +by^b =cz^c   Let a=4j^2  , b=4k^2  , c=4l^2   4j^2 x^(4j^2 ) +4k^2 y^(4k^2 ) =4l^2 z^(4l^2 )   j^2 x^(4j^2 ) +k^2 y^(4k^2 ) =l^2 z^(4l^2 )   (jx^(2j^2 ) )^2 +(ky^(2k^2 ) )^2 =(lz^(2l^2 ) )^2   (jx^(2j^2 ) ,ky^(2k^2 ) ,lz^(2l^2 ) ) is Pythagorean triple.  −−−−−−−−−−−  If (X,Y,Z) is Pythagorean triplet  such that j∣X ,k∣Y and l∣Z  ((1/j) X^( (1/(2j^2 )))  , (1/k)Y^( (1/(2k^2 )))  , (1/l)Z^( (1/(2l^2 )))  ) is triplet  satisfying  ax^a +by^b =cz^c  where  j=((√a)/2) ,k=((√b)/2) ,l=((√c)/2)  a,b,c perfect squares and even  −−−−−−−−OR−−−−−−−  If (X,Y,Z) is Pythagorean triplet  such that ((√a)/2) ∣ X ,((√b)/2) ∣ Y and ((√c)/2) ∣Z  Also  X^(1/a)  ,Y^(1/b) ,Z^(1/c)  are integers.   ((2/(√a)) X^(2/a) , (2/(√b)) Y^(2/b) ,(2/(√c)) Z^(2/c) ) is a required triple .  a,b,c are perfect squares and even.  j=1,k=2,l=3  (x^2 )^2 +(2y^8 )^2 =(3z^(18) )^2   x^4 +4y^(16) =9z^(36)   −−−−−−  (m^2 −n^2 ,2mn,m^2 +n^2 ) is general  triple,suggested by Euclid  ∀ m,n∈N ∧ m>n  −−−−−−−−−−  For 2mn to be of bx^b  type  let m=(b/2)n^(b−1)   2mn=bn^b   m^2 +n^2 =(bn^b )^2 +n^2 =b^2 n^(2b) +n^2               =(b^2 n^(2b−2) +1)n^2 =cn^c                  (b^2 n^(2b−2) +1)=cn^(c−2)     Continue

$$\mathrm{ax}^{\mathrm{a}} +\mathrm{by}^{\mathrm{b}} =\mathrm{cz}^{\mathrm{c}} \\ $$$${Let}\:\mathrm{a}=\mathrm{4j}^{\mathrm{2}} \:,\:\mathrm{b}=\mathrm{4k}^{\mathrm{2}} \:,\:\mathrm{c}=\mathrm{4}{l}^{\mathrm{2}} \\ $$$$\mathrm{4j}^{\mathrm{2}} \mathrm{x}^{\mathrm{4j}^{\mathrm{2}} } +\mathrm{4k}^{\mathrm{2}} \mathrm{y}^{\mathrm{4k}^{\mathrm{2}} } =\mathrm{4}{l}^{\mathrm{2}} \mathrm{z}^{\mathrm{4}{l}^{\mathrm{2}} } \\ $$$$\mathrm{j}^{\mathrm{2}} \mathrm{x}^{\mathrm{4j}^{\mathrm{2}} } +\mathrm{k}^{\mathrm{2}} \mathrm{y}^{\mathrm{4k}^{\mathrm{2}} } ={l}^{\mathrm{2}} \mathrm{z}^{\mathrm{4}{l}^{\mathrm{2}} } \\ $$$$\left(\mathrm{jx}^{\mathrm{2j}^{\mathrm{2}} } \right)^{\mathrm{2}} +\left(\mathrm{ky}^{\mathrm{2k}^{\mathrm{2}} } \right)^{\mathrm{2}} =\left({l}\mathrm{z}^{\mathrm{2}{l}^{\mathrm{2}} } \right)^{\mathrm{2}} \\ $$$$\left(\mathrm{jx}^{\mathrm{2j}^{\mathrm{2}} } ,\mathrm{ky}^{\mathrm{2k}^{\mathrm{2}} } ,{l}\mathrm{z}^{\mathrm{2}{l}^{\mathrm{2}} } \right)\:{is}\:{Pythagorean}\:{triple}. \\ $$$$−−−−−−−−−−− \\ $$$$\mathrm{If}\:\left(\mathrm{X},\mathrm{Y},\mathrm{Z}\right)\:{is}\:{Pythagorean}\:{triplet} \\ $$$${such}\:{that}\:\mathrm{j}\mid\mathrm{X}\:,\mathrm{k}\mid\mathrm{Y}\:{and}\:{l}\mid\mathrm{Z} \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{j}}\:\mathrm{X}^{\:\frac{\mathrm{1}}{\mathrm{2j}^{\mathrm{2}} }} \:,\:\frac{\mathrm{1}}{{k}}\mathrm{Y}^{\:\frac{\mathrm{1}}{\mathrm{2}{k}^{\mathrm{2}} }} \:,\:\frac{\mathrm{1}}{{l}}\mathrm{Z}^{\:\frac{\mathrm{1}}{\mathrm{2}{l}^{\mathrm{2}} }} \:\right)\:{is}\:{triplet} \\ $$$${satisfying}\:\:\mathrm{ax}^{\mathrm{a}} +\mathrm{by}^{\mathrm{b}} =\mathrm{cz}^{\mathrm{c}} \:{where} \\ $$$${j}=\frac{\sqrt{\mathrm{a}}}{\mathrm{2}}\:,{k}=\frac{\sqrt{\mathrm{b}}}{\mathrm{2}}\:,{l}=\frac{\sqrt{\mathrm{c}}}{\mathrm{2}} \\ $$$$\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{perfect}\:\mathrm{squares}\:\mathrm{and}\:\mathrm{even} \\ $$$$−−−−−−−−\mathcal{OR}−−−−−−− \\ $$$$\mathrm{If}\:\left(\mathrm{X},\mathrm{Y},\mathrm{Z}\right)\:{is}\:{Pythagorean}\:{triplet} \\ $$$${such}\:{that}\:\frac{\sqrt{\mathrm{a}}}{\mathrm{2}}\:\mid\:\mathrm{X}\:,\frac{\sqrt{\mathrm{b}}}{\mathrm{2}}\:\mid\:\mathrm{Y}\:\mathrm{and}\:\frac{\sqrt{\mathrm{c}}}{\mathrm{2}}\:\mid{Z} \\ $$$$\mathrm{Also}\:\:\mathrm{X}^{\frac{\mathrm{1}}{\mathrm{a}}} \:,\mathrm{Y}^{\frac{\mathrm{1}}{\mathrm{b}}} ,\mathrm{Z}^{\frac{\mathrm{1}}{\mathrm{c}}} \:\mathrm{are}\:\mathrm{integers}. \\ $$$$\:\left(\frac{\mathrm{2}}{\sqrt{\mathrm{a}}}\:\mathrm{X}^{\frac{\mathrm{2}}{\mathrm{a}}} ,\:\frac{\mathrm{2}}{\sqrt{\mathrm{b}}}\:\mathrm{Y}^{\frac{\mathrm{2}}{\mathrm{b}}} ,\frac{\mathrm{2}}{\sqrt{\mathrm{c}}}\:\mathrm{Z}^{\frac{\mathrm{2}}{\mathrm{c}}} \right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{required}\:\mathrm{triple}\:. \\ $$$$\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{are}\:\mathrm{perfect}\:\mathrm{squares}\:\mathrm{and}\:\mathrm{even}. \\ $$$$\mathrm{j}=\mathrm{1},\mathrm{k}=\mathrm{2},{l}=\mathrm{3} \\ $$$$\left(\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} +\left(\mathrm{2y}^{\mathrm{8}} \right)^{\mathrm{2}} =\left(\mathrm{3z}^{\mathrm{18}} \right)^{\mathrm{2}} \\ $$$$\mathrm{x}^{\mathrm{4}} +\mathrm{4y}^{\mathrm{16}} =\mathrm{9z}^{\mathrm{36}} \\ $$$$−−−−−− \\ $$$$\left({m}^{\mathrm{2}} −{n}^{\mathrm{2}} ,\mathrm{2}{mn},{m}^{\mathrm{2}} +{n}^{\mathrm{2}} \right)\:{is}\:{general} \\ $$$${triple},{suggested}\:{by}\:\mathcal{E}{uclid} \\ $$$$\forall\:{m},{n}\in\mathbb{N}\:\wedge\:{m}>{n} \\ $$$$−−−−−−−−−− \\ $$$$\mathrm{For}\:\mathrm{2mn}\:\mathrm{to}\:\mathrm{be}\:\mathrm{of}\:\mathrm{bx}^{\mathrm{b}} \:\mathrm{type} \\ $$$$\mathrm{let}\:\mathrm{m}=\frac{\mathrm{b}}{\mathrm{2}}\mathrm{n}^{\mathrm{b}−\mathrm{1}} \\ $$$$\mathrm{2mn}=\mathrm{bn}^{\mathrm{b}} \\ $$$$\mathrm{m}^{\mathrm{2}} +\mathrm{n}^{\mathrm{2}} =\left(\mathrm{bn}^{\mathrm{b}} \right)^{\mathrm{2}} +\mathrm{n}^{\mathrm{2}} =\mathrm{b}^{\mathrm{2}} \mathrm{n}^{\mathrm{2b}} +\mathrm{n}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\left(\mathrm{b}^{\mathrm{2}} \mathrm{n}^{\mathrm{2b}−\mathrm{2}} +\mathrm{1}\right)\mathrm{n}^{\mathrm{2}} =\mathrm{cn}^{\mathrm{c}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{b}^{\mathrm{2}} \mathrm{n}^{\mathrm{2b}−\mathrm{2}} +\mathrm{1}\right)=\mathrm{cn}^{\mathrm{c}−\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Continue} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com