Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42680 by prof Abdo imad last updated on 31/Aug/18

calculale  A_n (α) = ∫_(−∞) ^(+∞)    ((cos(αx^n ))/(1+x^2 )) dx with  n integr natural.

$${calculale}\:\:{A}_{{n}} \left(\alpha\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\alpha{x}^{{n}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:{with} \\ $$$${n}\:{integr}\:{natural}. \\ $$$$ \\ $$

Commented by prof Abdo imad last updated on 31/Aug/18

α real.

$$\alpha\:{real}. \\ $$

Commented by maxmathsup by imad last updated on 01/Sep/18

we have A_n (α) =Re( ∫_(−∞) ^(+∞)    (e^(iαx^n ) /(1+x^2 )) dx) let consider the comlex function  ϕ(z) =(e^(iαz^n ) /(1+z^2 ))    ⇒ϕ(z) = (e^(iαz^n ) /((z−i)(z+i))) the poles of ϕ are +^− i  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ Res(ϕ,i) but   Res(ϕ,i)= (e^(iαi^n ) /(2i)) ⇒  ∫_(−∞) ^(+∞)    ϕ(z)dz =2iπ (e^(iαi^n ) /(2i)) =π e^(iα(−1)^(n/2) )  =π{ cos((−1)^(n/2) α)+isin((−1)^(n/2) α)} ⇒  A_n = π cos{(−1)^(n/2) α} ⇒ A_(2n) = π  cos{(−1)^n α} and  A_(2n+1) =π cos{i(−1)^n α}   but  cosz =((e^(iz)  +e^(−iz) )/2) ⇒cos(ix)=((e^(−x)  +e^x )/2) =ch(x)  (x∈R) ⇒ A_(2n+1) =π  ch{(−1)^n α} .

$${we}\:{have}\:{A}_{{n}} \left(\alpha\right)\:={Re}\left(\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{{i}\alpha{x}^{{n}} } }{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\right)\:{let}\:{consider}\:{the}\:{comlex}\:{function} \\ $$$$\varphi\left({z}\right)\:=\frac{{e}^{{i}\alpha{z}^{{n}} } }{\mathrm{1}+{z}^{\mathrm{2}} }\:\:\:\:\Rightarrow\varphi\left({z}\right)\:=\:\frac{{e}^{{i}\alpha{z}^{{n}} } }{\left({z}−{i}\right)\left({z}+{i}\right)}\:{the}\:{poles}\:{of}\:\varphi\:{are}\:\overset{−} {+}{i} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right)\:{but}\:\:\:{Res}\left(\varphi,{i}\right)=\:\frac{{e}^{{i}\alpha{i}^{{n}} } }{\mathrm{2}{i}}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{{e}^{{i}\alpha{i}^{{n}} } }{\mathrm{2}{i}}\:=\pi\:{e}^{{i}\alpha\left(−\mathrm{1}\right)^{\frac{{n}}{\mathrm{2}}} } \:=\pi\left\{\:{cos}\left(\left(−\mathrm{1}\right)^{\frac{{n}}{\mathrm{2}}} \alpha\right)+{isin}\left(\left(−\mathrm{1}\right)^{\frac{{n}}{\mathrm{2}}} \alpha\right)\right\}\:\Rightarrow \\ $$$${A}_{{n}} =\:\pi\:{cos}\left\{\left(−\mathrm{1}\right)^{\frac{{n}}{\mathrm{2}}} \alpha\right\}\:\Rightarrow\:{A}_{\mathrm{2}{n}} =\:\pi\:\:{cos}\left\{\left(−\mathrm{1}\right)^{{n}} \alpha\right\}\:{and} \\ $$$${A}_{\mathrm{2}{n}+\mathrm{1}} =\pi\:{cos}\left\{{i}\left(−\mathrm{1}\right)^{{n}} \alpha\right\}\:\:\:{but}\:\:{cosz}\:=\frac{{e}^{{iz}} \:+{e}^{−{iz}} }{\mathrm{2}}\:\Rightarrow{cos}\left({ix}\right)=\frac{{e}^{−{x}} \:+{e}^{{x}} }{\mathrm{2}}\:={ch}\left({x}\right) \\ $$$$\left({x}\in{R}\right)\:\Rightarrow\:{A}_{\mathrm{2}{n}+\mathrm{1}} =\pi\:\:{ch}\left\{\left(−\mathrm{1}\right)^{{n}} \alpha\right\}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com