Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42704 by maxmathsup by imad last updated on 01/Sep/18

f(x)  =  ((e^(3x)  +e^(−3x) )/2)  1) determine f^(−1) (x)  2) calculate  ∫_0 ^1    x f(x)dx    and ∫_0 ^1 f(x)dx  3)  calculate   ∫  f^(−1) (x)dx  4) calculate u_n = ∫_0 ^π   f(x)cos(nx)dx and v_n = ∫_0 ^n   f(x)sin(nx)dx  find nature of Σ (v_n /u_n )  ∫_0 ^1  xf(x) dx =(1/2) ∫_0 ^1  x e^(3x) dx +(1/2) ∫_0 ^1  x e^(−3x) dx   (by parts)  =(1/2){  [(x/3)e^(3x) ]_0 ^1  −(1/3)∫_0 ^1   e^(3x) dx  +[−(x/3)e^(−3x) ]_0 ^1  +(1/3)∫_0 ^1   e^(−3x) dx}  =(1/2){(e^3 /3) −(1/9)(e^3 −1) −(e^(−3) /3) −(1/9)(e^(−3) −1)}

f(x)=e3x+e3x21)determinef1(x)2)calculate01xf(x)dxand01f(x)dx3)calculatef1(x)dx4)calculateun=0πf(x)cos(nx)dxandvn=0nf(x)sin(nx)dxfindnatureofΣvnun01xf(x)dx=1201xe3xdx+1201xe3xdx(byparts)=12{[x3e3x]011301e3xdx+[x3e3x]01+1301e3xdx}=12{e3319(e31)e3319(e31)}

Commented by maxmathsup by imad last updated on 01/Sep/18

1) f(x)=ch(3x) =y ⇔ 3x =argch(y) ⇔x =(1/3)argch(y) =(1/3)ln(y+(√(y^2 −1))) ⇒  f^(−1) (x) =(1/3)ln(y+(√(y^2 −1)))  2)∫_0 ^1 f(x)dx = (1/2)∫_0 ^1 ( e^(3x)  +e^(−3x) )dx =(1/2)[(1/3)e^(3x) −(1/3)e^(−3x) ]_0 ^1   =(1/6){e^3  −e^(−3) }

1)f(x)=ch(3x)=y3x=argch(y)x=13argch(y)=13ln(y+y21)f1(x)=13ln(y+y21)2)01f(x)dx=1201(e3x+e3x)dx=12[13e3x13e3x]01=16{e3e3}

Commented by maxmathsup by imad last updated on 01/Sep/18

3) let I  = ∫  f^(−1) (x)dx   let  f^(−1) (x) =t ⇒ x =f(t) ⇒  I = ∫  t f^′ (t)dt = tf(t) −∫  f(t)dt   and   ∫ f(t)dt =∫   ((e^(3t)  +e^(−3t) )/2) dt =(1/6) e^(3t) −(1/6) e^(−3t)   +c ⇒  I  = t f(t)−(1/6) e^(3t)  +(1/6) e^(−3t)    but t =f^(−1) (x) =(1/3)ln(x+(√(x^2 −1))) ⇒  I  =(x/3)ln(x+(√(x^2 −1))) −(1/6)(x+(√(x^2 −1)))  +(1/(6(x+(√(x^2 −1))))) +c

3)letI=f1(x)dxletf1(x)=tx=f(t)I=tf(t)dt=tf(t)f(t)dtandf(t)dt=e3t+e3t2dt=16e3t16e3t+cI=tf(t)16e3t+16e3tbutt=f1(x)=13ln(x+x21)I=x3ln(x+x21)16(x+x21)+16(x+x21)+c

Commented by maxmathsup by imad last updated on 02/Sep/18

4)  we have u_n = ∫_0 ^π  f(x)cos(nx)dx =(1/2) ∫_0 ^π   (e^(3x)  +e^(−3x) )cos(nx)dx ⇒  2u_n = Re( ∫_0 ^π   e^(inx) (e^(3x)  +e^(−3x) )dx) =Re( ∫_0 ^π  e^((3+in)x)  + e^((−3+in)x) )dx but  ∫_0 ^π  ( e^((3+in)x)  +e^((−3+in)x) )dx =[(1/(3+in)) e^((3+in)x)  +(1/(−3+in)) e^((−3+in)x) ]_0 ^π   =((e^(3π) (−1)^n )/(3+in)) +((e^(−3π) (−1)^n )/(−3 +in))  −(1/(3+in)) −(1/(−3+in))  =(((3−in) e^(3π) (−1)^n )/(9+n^2 )) + (((−3−in)e^(−3π) (−1)^n )/(9+n^2 )) −(1/(3+in)) +(1/(3−in))  =(((−1)^n )/(9+n^2 )) { 3 e^(3π)  −in e^(3π)  −3 e^(−3π)  −in e^(−3π) } +(1/(3−in)) −(1/(3+in))  =((3(−1)^n )/(9+n^2 )){ e^(3π)  −e^(−3π) } −((n(−1)^n )/(9+n^2 ))i {e^(3π)  +e^(−3π) }   +((2in)/(9+n^2 ))  ⇒ u_n = ((3(−1)^n (e^(3π)  −e^(−3π) ))/(9+n^2 ))    also we have v_n = Im(∫_0 ^π  e^((3+in)x)  +e^((−3+in)x) )dx)  ⇒v_n =((2n −n(−1)^n )/(9+n^2 )) .

4)wehaveun=0πf(x)cos(nx)dx=120π(e3x+e3x)cos(nx)dx2un=Re(0πeinx(e3x+e3x)dx)=Re(0πe(3+in)x+e(3+in)x)dxbut0π(e(3+in)x+e(3+in)x)dx=[13+ine(3+in)x+13+ine(3+in)x]0π=e3π(1)n3+in+e3π(1)n3+in13+in13+in=(3in)e3π(1)n9+n2+(3in)e3π(1)n9+n213+in+13in=(1)n9+n2{3e3πine3π3e3πine3π}+13in13+in=3(1)n9+n2{e3πe3π}n(1)n9+n2i{e3π+e3π}+2in9+n2un=3(1)n(e3πe3π)9+n2alsowehavevn=Im(0πe(3+in)x+e(3+in)x)dx)vn=2nn(1)n9+n2.

Commented by maxmathsup by imad last updated on 02/Sep/18

u_n =((3(−1)^n (e^(3π)  −e^(−3π) ))/(2(9+n^2 )))   and v_n = ((2n−n(−1)^n { e^(3π)  +e^(−3π) })/(2(9+n^2 )))

un=3(1)n(e3πe3π)2(9+n2)andvn=2nn(1)n{e3π+e3π}2(9+n2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com