Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42708 by prof Abdo imad last updated on 01/Sep/18

calculate  f(α)=∫_0 ^∞     ((e^(−2x) −e^(−x) )/x^2 ) e^(−αx^2 ) dx  with α>0  1) find the value of    ∫_0 ^∞     ((e^(−2x)  −e^(−x) )/x^2 ) e^(−2x^2 ) dx

calculatef(α)=0e2xexx2eαx2dxwithα>0 1)findthevalueof0e2xexx2e2x2dx

Commented bymaxmathsup by imad last updated on 02/Sep/18

1) f^′ (α) = −∫_0 ^(+∞)   (e^(−2x) −e^(−x) )e^(−αx^2 ) dx =∫_0 ^∞   e^(−αx^2 −x) dx −∫_0 ^∞  e^(−αx^2 −2x) dx  but ∫_0 ^∞    e^(−αx^2 −x) dx =∫_0 ^∞     e^(−{((√α)x)^2   +2 (((√α)x)/(2(√α)))   + (1/(4α))−(1/(4α)))) dx =∫_0 ^∞   e^(−{((√α)x +(1/(2(√α))))^2 } +(1/(4α)))  dx   =_((√α)x  +(1/(2(√α))) =t)      e^(1/(4α))  ∫_0 ^∞     e^(−t^2    )  (dt/(√α)) =((√π)/2)   (e^(1/(4α)) /(√α)) ⇒ f(α) = ∫_. ^α  ((√π)/2) (e^(1/(4x)) /(√x))dx +c  =_((√x)=u)    ((√π)/2)  ∫_. ^(√α)  (e^(1/(4u^2 )) /u)(2u)du +c = (√π) ∫_. ^(√α)  e^(1/(4u^2 ))  du +c ⇒f(α) =(√π) ∫_1 ^(√α)  e^(1/(4u^2 ))   +c  c =f(1) = ∫_0 ^∞   ((e^(−x^2 −2x) −e^(−x^2 −x) )/x^2 )dx  2) ∫_0 ^∞    ((e^(−2x)  −e^(−x) )/x^2 ) e^(−2x^2 ) dx =f(2) = (√π) ∫_1 ^(√2)  e^(1/(4u^2 ))  du  +f(1) ....

1)f(α)=0+(e2xex)eαx2dx=0eαx2xdx0eαx22xdx but0eαx2xdx=0e{(αx)2+2αx2α+14α14α)dx=0e{(αx+12α)2}+14αdx =αx+12α=te14α0et2dtα=π2e14ααf(α)=.απ2e14xxdx+c =x=uπ2.αe14u2u(2u)du+c=π.αe14u2du+cf(α)=π1αe14u2+c c=f(1)=0ex22xex2xx2dx 2)0e2xexx2e2x2dx=f(2)=π12e14u2du+f(1)....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com