All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 42708 by prof Abdo imad last updated on 01/Sep/18
calculatef(α)=∫0∞e−2x−e−xx2e−αx2dxwithα>0 1)findthevalueof∫0∞e−2x−e−xx2e−2x2dx
Commented bymaxmathsup by imad last updated on 02/Sep/18
1)f′(α)=−∫0+∞(e−2x−e−x)e−αx2dx=∫0∞e−αx2−xdx−∫0∞e−αx2−2xdx but∫0∞e−αx2−xdx=∫0∞e−{(αx)2+2αx2α+14α−14α)dx=∫0∞e−{(αx+12α)2}+14αdx =αx+12α=te14α∫0∞e−t2dtα=π2e14αα⇒f(α)=∫.απ2e14xxdx+c =x=uπ2∫.αe14u2u(2u)du+c=π∫.αe14u2du+c⇒f(α)=π∫1αe14u2+c c=f(1)=∫0∞e−x2−2x−e−x2−xx2dx 2)∫0∞e−2x−e−xx2e−2x2dx=f(2)=π∫12e14u2du+f(1)....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com