Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42792 by maxmathsup by imad last updated on 02/Sep/18

find ∫_0 ^1   ((1+x^2 )/(1+x^3 ))dx

find011+x21+x3dx

Commented by behi83417@gmail.com last updated on 03/Sep/18

I=(1/3)ln(1+x^3 )+A.ln(1+x)+B.ln((x−a)/(x−b))+c

I=13ln(1+x3)+A.ln(1+x)+B.lnxaxb+c

Answered by tanmay.chaudhury50@gmail.com last updated on 04/Sep/18

∫_0 ^1 (dx/(1+x^3 ))+(1/3)∫_0 ^1 ((3x^2 )/(1+x^3 ))  ∫_0 ^1 (dx/((1+x)(1−x+x^2 )))+(1/3)∫_0 ^1 ((d(1+x^3 ))/(1+x^3 ))  I_2 =(1/3)∫_0 ^1 ((d(1+x^3 ))/(1+x^3 ))=(1/3)∣ln(1+x^3 )∣_0 ^1 =(1/3)ln2  now  (1/((1+x)(1−x+x^2 )))=(a/(1+x))+((bx+c)/(x^2 −x+1))  1=a(x^2 −x+1)+(bx+c)(1+x)  1=ax^2 −ax+a+bx+bx^2 +c+cx  contd  1=x^2 (a+b)+x(−a+b+c)+(a+c)  a+b=0   −a+b+c=0    a+c=1  −a−a+c=0   c=2a    a+2a=1  a=(1/3)   b=((−1)/3)   c=(2/3)  I_1 =∫_0 ^1 {(a/(1+x))+((bx+c)/(x^2 −x+1)) }dx  =(1/3)∫_(0 ) ^1 (dx/(1+x))+(1/3)∫_0 ^1 ((−x+2)/(x^2 −x+1))dx  =(1/3)∫_0 ^1 (dx/(1+x))−(1/6)∫_0 ^1 ((2x−1−3)/(x^2 −x+1))dx  =(1/3)ln2−(1/6)∫_0 ^1 ((d(x^2 −x+1))/(x^2 −x+1))+(1/2)∫_0 ^1 (dx/((x^2 −2.x.(1/2)+(1/4)+1−(1/4))))  =(1/3)ln2−(1/6)∣ln(x^2 −x+1)∣_0 ^1 +(1/2)∫_0 ^1 (dx/((x−(1/2))^2 +(((√3)/2))^2 ))  =(1/3)ln2−(1/6)×0+(1/2)×(2/(√3))∣tan^(−1) (((x−(1/2))/((√3)/2)))∣_0 ^1   =(1/3)ln2+(1/(√3)){tan^(−1) (1/(√3))−tan^(−1) (−(1/(√3)))}  =(1/3)ln2+(2/(√3))×(Π/6)=(1/3)ln2+(Π/(3(√3)))  clmplete ans is =(2/3)ln2+(Π/(3(√3)))

01dx1+x3+13013x21+x301dx(1+x)(1x+x2)+1301d(1+x3)1+x3I2=1301d(1+x3)1+x3=13ln(1+x3)01=13ln2now1(1+x)(1x+x2)=a1+x+bx+cx2x+11=a(x2x+1)+(bx+c)(1+x)1=ax2ax+a+bx+bx2+c+cxcontd1=x2(a+b)+x(a+b+c)+(a+c)a+b=0a+b+c=0a+c=1aa+c=0c=2aa+2a=1a=13b=13c=23I1=01{a1+x+bx+cx2x+1}dx=1301dx1+x+1301x+2x2x+1dx=1301dx1+x16012x13x2x+1dx=13ln21601d(x2x+1)x2x+1+1201dx(x22.x.12+14+114)=13ln216ln(x2x+1)01+1201dx(x12)2+(32)2=13ln216×0+12×23tan1(x1232)01=13ln2+13{tan113tan1(13)}=13ln2+23×Π6=13ln2+Π33clmpleteansis=23ln2+Π33

Terms of Service

Privacy Policy

Contact: info@tinkutara.com