All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 42792 by maxmathsup by imad last updated on 02/Sep/18
find∫011+x21+x3dx
Commented by behi83417@gmail.com last updated on 03/Sep/18
I=13ln(1+x3)+A.ln(1+x)+B.lnx−ax−b+c
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Sep/18
∫01dx1+x3+13∫013x21+x3∫01dx(1+x)(1−x+x2)+13∫01d(1+x3)1+x3I2=13∫01d(1+x3)1+x3=13∣ln(1+x3)∣01=13ln2now1(1+x)(1−x+x2)=a1+x+bx+cx2−x+11=a(x2−x+1)+(bx+c)(1+x)1=ax2−ax+a+bx+bx2+c+cxcontd1=x2(a+b)+x(−a+b+c)+(a+c)a+b=0−a+b+c=0a+c=1−a−a+c=0c=2aa+2a=1a=13b=−13c=23I1=∫01{a1+x+bx+cx2−x+1}dx=13∫01dx1+x+13∫01−x+2x2−x+1dx=13∫01dx1+x−16∫012x−1−3x2−x+1dx=13ln2−16∫01d(x2−x+1)x2−x+1+12∫01dx(x2−2.x.12+14+1−14)=13ln2−16∣ln(x2−x+1)∣01+12∫01dx(x−12)2+(32)2=13ln2−16×0+12×23∣tan−1(x−1232)∣01=13ln2+13{tan−113−tan−1(−13)}=13ln2+23×Π6=13ln2+Π33clmpleteansis=23ln2+Π33
Terms of Service
Privacy Policy
Contact: info@tinkutara.com