All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 42793 by maxmathsup by imad last updated on 02/Sep/18
findf(a)=∫01dt(a2+t2)3witha>0
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Sep/18
t=atanαdt=asec2αdα ∫0tan−1(1a)asec2αdα{a2(1+tan2α)}3 ∫0tan−1(1a)asec2αdαa6sec6α 1a5∫0tan−1(1a)(1+cos2α2)2dα 14a5∫0tan−1(1a)1+2cos2α+1+cos4α2dα 18a5∫0tan−1(1a)3+4cos2α+cos4αdα 18a5∣(3α+4sin2α2+sin4α4)∣0tan−1(1a) nowtanα=1a sin2α=2tanα1+tan2α=2a1+1a2=2a1+a2 sin4α=2sin2α.cos2α =2(2t1+t2×1−t21+t2) =4(1a)(1−1a2)(1+1a2)2=4(a2−1)a3(a2+1)2a4=4a(a2−1)(a2+1)2 nowputthevalue... contdsotheansis =18a5∣3tan−1(1a)+2.2a1+a2+14.4a(a2−1)(a2+1)2∣ =18a5{3tan−1(1a)+4a1+a2+a3−a(a2+1)2}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com