Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42793 by maxmathsup by imad last updated on 02/Sep/18

find f(a)= ∫_0 ^1    (dt/((a^2  +t^2 )^3 ))   with a>0

findf(a)=01dt(a2+t2)3witha>0

Answered by tanmay.chaudhury50@gmail.com last updated on 04/Sep/18

t=atanα  dt=asec^2 αdα  ∫_0 ^(tan^(−1) ((1/a))) ((asec^2 αdα)/({a^2 (1+tan^2 α)}^3 ))  ∫_(0 ) ^(tan^(−1) ((1/a))) ((asec^2 αdα)/(a^6 sec^6 α))  (1/a^5 )∫_0 ^(tan^(−1) ((1/a))) (((1+cos2α)/2))^2 dα  (1/(4a^5 ))∫_0 ^(tan^(−1) ((1/a))) 1+2cos2α+((1+cos4α)/2) dα  (1/(8a^5 ))∫_0 ^(tan^(−1) ((1/a)))   3+4cos2α+cos4α dα  (1/(8a^5 ))∣(3α+((4sin2α)/2)+((sin4α)/4))∣_0 ^(tan^(−1) ((1/a)))   now tanα=(1/a)  sin2α=((2tanα)/(1+tan^2 α))=((2/a)/(1+(1/a^2 )))=((2a)/(1+a^2 ))  sin4α=2sin2α.cos2α             =2(((2t)/(1+t^2 ))×((1−t^2 )/(1+t^2 )))    =((4((1/a))(1−(1/a^2 )))/((1+(1/a^2 ))^2 ))=(((4(a^2 −1))/a^3 )/(((a^2 +1)^2 )/a^4 ))=((4a(a^2 −1))/((a^2 +1)^2 ))  now put the value...  contd  so the ans is  =(1/(8a^5 ))∣3tan^(−1) ((1/a))+2.((2a)/(1+a^2 ))+(1/4).((4a(a^2 −1))/((a^2 +1)^2 ))∣  =(1/(8a^5 )){3tan^(−1) ((1/a))+((4a)/(1+a^2 ))+((a^3 −a)/((a^2 +1)^2 ))}

t=atanαdt=asec2αdα 0tan1(1a)asec2αdα{a2(1+tan2α)}3 0tan1(1a)asec2αdαa6sec6α 1a50tan1(1a)(1+cos2α2)2dα 14a50tan1(1a)1+2cos2α+1+cos4α2dα 18a50tan1(1a)3+4cos2α+cos4αdα 18a5(3α+4sin2α2+sin4α4)0tan1(1a) nowtanα=1a sin2α=2tanα1+tan2α=2a1+1a2=2a1+a2 sin4α=2sin2α.cos2α =2(2t1+t2×1t21+t2) =4(1a)(11a2)(1+1a2)2=4(a21)a3(a2+1)2a4=4a(a21)(a2+1)2 nowputthevalue... contdsotheansis =18a53tan1(1a)+2.2a1+a2+14.4a(a21)(a2+1)2 =18a5{3tan1(1a)+4a1+a2+a3a(a2+1)2}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com