Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42799 by maxmathsup by imad last updated on 02/Sep/18

let I = ∫_0 ^(π/8)   e^(−2t)  cos^4 t    and J  =∫_0 ^(π/8)  e^(−2t)  sin^4 dt  find the values of I andJ .

letI=0π8e2tcos4tandJ=0π8e2tsin4dtfindthevaluesofIandJ.

Commented by maxmathsup by imad last updated on 06/Sep/18

we have  I +J = ∫_0 ^(π/8)  e^(−2t) { cos^4 t +sin^4 t}dt  = ∫_0 ^(π/8)  e^(−2t) { (cos^2 t +sin^2 t)^2  −2cos^2 t sin^2 t}dt  =∫_0 ^(π/8)   e^(−2t) {  1−(1/2) sin^2 2t} dt = ∫_0 ^(π/8)  e^(−2t) dt −(1/2) ∫_0 ^(π/8)  e^(−2t)   sin^2 (2t) dt  =−(1/2)[ e^(−2t) ]_0 ^(π/8)    −(1/4) ∫_0 ^(π/8)  e^(−2t)  (1−cos(2t))dt  =(1/2){1−e^(−(π/4)) }  +(1/8)[ e^(−2t) ]_0 ^(π/8)   +(1/4) ∫_0 ^(π/8)  e^(−2t)  cos(2t)dt  =(1/2){1−e^(−(π/4)) } +(1/8){ e^(−(π/4))  −1} +(1/4) Re( ∫_0 ^(π/8)   e^(−2t +2it) dt) but  ∫_0 ^(π/8)   e^((−2+2i)t) dt =[ (1/(−2+2i)) e^((−2+2i)t) ]_0 ^(π/8)   =(1/(−2 +2i)) { e^((−2+2i)(π/8))  −1}  = −(1/2)  (1/(1−i)){ e^(−(π/4))  e^(i(π/4))  −1}} =−(1/2) (((1+i))/2)){ e^(−(π/4)) ( (1/(√2)) +(i/(√2))) −1}  =((−1)/4)(1+i) { (e^(−(π/4)) /(√2)) + i (e^(−(π/4)) /(√2)) −1}  =−(1/(4(√2))){ e^(−(π/4))  +i e^(−(π/4))  −(√2)}(1+i)  =−(1/(4(√2))){  e^(−(π/4))  +i e^(−(π/4))   +i e^(−(π/4))  −e^(−(π/4))  −(√2)−(√2)i}  = −(1/(4(√2))){ 2i e^(−(π/4))  −(√2)i −(√2)} ⇒Re( ∫_0 ^(π/2)  ...dx)= (1/4) ⇒   I +J =(1/2) −(1/8) −(3/8) e^(−(π/4))   +(1/(16)) = (7/(16)) −(3/8) e^(−(π/4))  .... be continued...

wehaveI+J=0π8e2t{cos4t+sin4t}dt=0π8e2t{(cos2t+sin2t)22cos2tsin2t}dt=0π8e2t{112sin22t}dt=0π8e2tdt120π8e2tsin2(2t)dt=12[e2t]0π8140π8e2t(1cos(2t))dt=12{1eπ4}+18[e2t]0π8+140π8e2tcos(2t)dt=12{1eπ4}+18{eπ41}+14Re(0π8e2t+2itdt)but0π8e(2+2i)tdt=[12+2ie(2+2i)t]0π8=12+2i{e(2+2i)π81}=1211i{eπ4eiπ41}}=12(1+i)2){eπ4(12+i2)1}=14(1+i){eπ42+ieπ421}=142{eπ4+ieπ42}(1+i)=142{eπ4+ieπ4+ieπ4eπ422i}=142{2ieπ42i2}Re(0π2...dx)=14I+J=121838eπ4+116=71638eπ4....becontinued...

Commented by maxmathsup by imad last updated on 06/Sep/18

we have I −J = ∫_0 ^(π/8)  e^(−2t) {cos^4 t −sin^4 t}dt  =∫_0 ^(π/8)  e^(−2t) {cos^2 t −sin^2 t}dt = ∫_0 ^(π/8)  e^(−2t)  cos(2t)dt =Re( ∫_0 ^(π/8)   e^(−2t +2it) dt)  =Re( ∫_0 ^(π/8)   e^((−2+2i)t) dt)=(1/4)  so  I+J =(7/(16)) −(3/8)e^(−(π/4))   and I−J=(1/4) ⇒  2I =((11)/(16)) −(3/8) e^(−(π/4))    and 2J =(3/(16)) −(3/8) e^(−(π/4))  ⇒  I =((11)/(32)) −(3/(16)) e^(−(π/4))   and J =(3/(32)) −(3/(16)) e^(−(π/4))

wehaveIJ=0π8e2t{cos4tsin4t}dt=0π8e2t{cos2tsin2t}dt=0π8e2tcos(2t)dt=Re(0π8e2t+2itdt)=Re(0π8e(2+2i)tdt)=14soI+J=71638eπ4andIJ=142I=111638eπ4and2J=31638eπ4I=1132316eπ4andJ=332316eπ4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com