All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 42799 by maxmathsup by imad last updated on 02/Sep/18
letI=∫0π8e−2tcos4tandJ=∫0π8e−2tsin4dtfindthevaluesofIandJ.
Commented by maxmathsup by imad last updated on 06/Sep/18
wehaveI+J=∫0π8e−2t{cos4t+sin4t}dt=∫0π8e−2t{(cos2t+sin2t)2−2cos2tsin2t}dt=∫0π8e−2t{1−12sin22t}dt=∫0π8e−2tdt−12∫0π8e−2tsin2(2t)dt=−12[e−2t]0π8−14∫0π8e−2t(1−cos(2t))dt=12{1−e−π4}+18[e−2t]0π8+14∫0π8e−2tcos(2t)dt=12{1−e−π4}+18{e−π4−1}+14Re(∫0π8e−2t+2itdt)but∫0π8e(−2+2i)tdt=[1−2+2ie(−2+2i)t]0π8=1−2+2i{e(−2+2i)π8−1}=−1211−i{e−π4eiπ4−1}}=−12(1+i)2){e−π4(12+i2)−1}=−14(1+i){e−π42+ie−π42−1}=−142{e−π4+ie−π4−2}(1+i)=−142{e−π4+ie−π4+ie−π4−e−π4−2−2i}=−142{2ie−π4−2i−2}⇒Re(∫0π2...dx)=14⇒I+J=12−18−38e−π4+116=716−38e−π4....becontinued...
wehaveI−J=∫0π8e−2t{cos4t−sin4t}dt=∫0π8e−2t{cos2t−sin2t}dt=∫0π8e−2tcos(2t)dt=Re(∫0π8e−2t+2itdt)=Re(∫0π8e(−2+2i)tdt)=14soI+J=716−38e−π4andI−J=14⇒2I=1116−38e−π4and2J=316−38e−π4⇒I=1132−316e−π4andJ=332−316e−π4
Terms of Service
Privacy Policy
Contact: info@tinkutara.com