Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 42805 by maxmathsup by imad last updated on 02/Sep/18

calculate lim_(n→+∞)  S_n    with  S_n = (1/n^4 ) Σ_(k=1) ^n   (k^3 /(√((1+((k/n))^2 )^3 )))

$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \:\:\:{with} \\ $$$${S}_{{n}} =\:\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{{k}^{\mathrm{3}} }{\sqrt{\left(\mathrm{1}+\left(\frac{{k}}{{n}}\right)^{\mathrm{2}} \right)^{\mathrm{3}} }} \\ $$

Commented by maxmathsup by imad last updated on 03/Sep/18

we have S_n =(1/n) Σ_(k=1) ^n    ((((k/n))^3 )/(√((1+((k/n))^2 )^3 ))) ⇒S_n  is a Rieman sum and  lim_(n→+∞)   S_n = ∫_0 ^1    (x^3 /(√((1+x^2 )^3 )))dx = ∫_0 ^1     (x^3 /(((√(1+x^2 )))^3 ))dx changemen (√(1+x^2 ))=t  give 1+x^2  =t^2  ⇒xdx =tdt ⇒ ∫_0 ^1    (x^3 /(((√(1+x^2 )^3 )))) dx = ∫_1 ^(√2) (((t^2 −1)tdt)/t^3 )  = ∫_1 ^(√2)  ((t^3 −t)/t^3 )dt = ∫_1 ^(√2)   (1−(1/t^2 )) =[t +(1/t)]_1 ^(√2)  =(√2)+(1/(√2)) −2 =(3/(√2)) −2 ⇒  lim_(n→+∞)   S_n = ((3−2(√2))/(√2))  .

$${we}\:{have}\:{S}_{{n}} =\frac{\mathrm{1}}{{n}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{\left(\frac{{k}}{{n}}\right)^{\mathrm{3}} }{\sqrt{\left(\mathrm{1}+\left(\frac{{k}}{{n}}\right)^{\mathrm{2}} \right)^{\mathrm{3}} }}\:\Rightarrow{S}_{{n}} \:{is}\:{a}\:{Rieman}\:{sum}\:{and} \\ $$$${lim}_{{n}\rightarrow+\infty} \:\:{S}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{\mathrm{3}} }{\sqrt{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }}{dx}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{x}^{\mathrm{3}} }{\left(\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{3}} }{dx}\:{changemen}\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }={t} \\ $$$${give}\:\mathrm{1}+{x}^{\mathrm{2}} \:={t}^{\mathrm{2}} \:\Rightarrow{xdx}\:={tdt}\:\Rightarrow\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{\mathrm{3}} }{\left(\sqrt{\left.\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\right.}\:{dx}\:=\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{2}}} \frac{\left({t}^{\mathrm{2}} −\mathrm{1}\right){tdt}}{{t}^{\mathrm{3}} } \\ $$$$=\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{2}}} \:\frac{{t}^{\mathrm{3}} −{t}}{{t}^{\mathrm{3}} }{dt}\:=\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{2}}} \:\:\left(\mathrm{1}−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right)\:=\left[{t}\:+\frac{\mathrm{1}}{{t}}\right]_{\mathrm{1}} ^{\sqrt{\mathrm{2}}} \:=\sqrt{\mathrm{2}}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:−\mathrm{2}\:=\frac{\mathrm{3}}{\sqrt{\mathrm{2}}}\:−\mathrm{2}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:\:{S}_{{n}} =\:\frac{\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}}{\sqrt{\mathrm{2}}}\:\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Sep/18

lim_(n→∞) S_n =lim n→∞ Σ_(k=1) ^n (1/n)((((k/n))^3 )/(√({1+((k/n))^2 }^3 )))  ∫_0 ^1 (x^3 /(√({1+x^2 }^3 )))dx =∫_0 ^1 (x^3 /((1+x^2 )^(3/2) ))dx  t^2 =1+x^2    tdt=xdx  ∫_1 ^(√2) (((t^2 −1)tdt)/t^3 )  ∫_1 ^(√2) 1−(1/t^2 ) dt  ∣t+(1/t)∣_1 ^(√2)   ((√2) −1)+((1/(√2))−1)  =((2−(√2) +1−(√2))/(√2))=((3−2(√2))/(√2))

$${li}\underset{{n}\rightarrow\infty} {{m}S}_{{n}} ={lim}\:{n}\rightarrow\infty\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{n}}\frac{\left(\frac{{k}}{{n}}\right)^{\mathrm{3}} }{\sqrt{\left\{\mathrm{1}+\left(\frac{{k}}{{n}}\right)^{\mathrm{2}} \right\}^{\mathrm{3}} }} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{3}} }{\sqrt{\left\{\mathrm{1}+{x}^{\mathrm{2}} \right\}^{\mathrm{3}} }}{dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{3}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{dx} \\ $$$${t}^{\mathrm{2}} =\mathrm{1}+{x}^{\mathrm{2}} \:\:\:{tdt}={xdx} \\ $$$$\int_{\mathrm{1}} ^{\sqrt{\mathrm{2}}} \frac{\left({t}^{\mathrm{2}} −\mathrm{1}\right){tdt}}{{t}^{\mathrm{3}} } \\ $$$$\int_{\mathrm{1}} ^{\sqrt{\mathrm{2}}} \mathrm{1}−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\:{dt} \\ $$$$\mid{t}+\frac{\mathrm{1}}{{t}}\mid_{\mathrm{1}} ^{\sqrt{\mathrm{2}}} \\ $$$$\left(\sqrt{\mathrm{2}}\:−\mathrm{1}\right)+\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}−\mathrm{1}\right) \\ $$$$=\frac{\mathrm{2}−\sqrt{\mathrm{2}}\:+\mathrm{1}−\sqrt{\mathrm{2}}}{\sqrt{\mathrm{2}}}=\frac{\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}}{\sqrt{\mathrm{2}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com