Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 4281 by Filup last updated on 07/Jan/16

The following image shows the functiond  f(x)=xe^(1/(1−x))         and      g(x)=x−1    Can you explain as to why as ∣f(x)∣→∞,  that f(x)→g(x).

$$\mathrm{The}\:\mathrm{following}\:\mathrm{image}\:\mathrm{shows}\:\mathrm{the}\:\mathrm{functiond} \\ $$$${f}\left({x}\right)={xe}^{\frac{\mathrm{1}}{\mathrm{1}−{x}}} \:\:\:\:\:\:\:\:\mathrm{and}\:\:\:\:\:\:{g}\left({x}\right)={x}−\mathrm{1} \\ $$$$ \\ $$$$\mathrm{Can}\:\mathrm{you}\:\mathrm{explain}\:\mathrm{as}\:\mathrm{to}\:\mathrm{why}\:\mathrm{as}\:\mid{f}\left({x}\right)\mid\rightarrow\infty, \\ $$$$\mathrm{that}\:{f}\left({x}\right)\rightarrow{g}\left({x}\right). \\ $$

Commented by Filup last updated on 07/Jan/16

Commented by Filup last updated on 07/Jan/16

x→±∞, ∣x∣→∞  lim_(x→∞)  xe^(1/(1−x)) =∞e^0 =∞   (1)  lim_(x→∞)  x−1=∞                   (2)  (1) and (2) tend to infinity. Thus limits  are equal.

$${x}\rightarrow\pm\infty,\:\mid{x}\mid\rightarrow\infty \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{xe}^{\frac{\mathrm{1}}{\mathrm{1}−{x}}} =\infty{e}^{\mathrm{0}} =\infty\:\:\:\left(\mathrm{1}\right) \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}−\mathrm{1}=\infty\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)\:\mathrm{and}\:\left(\mathrm{2}\right)\:\mathrm{tend}\:\mathrm{to}\:\mathrm{infinity}.\:\mathrm{Thus}\:\mathrm{limits} \\ $$$$\mathrm{are}\:\mathrm{equal}. \\ $$

Commented by Yozzii last updated on 07/Jan/16

f(x)=xe^(1/(1−x))     (x≠1)  f^′ (x)=e^((1−x)^(−1) ) +x×(1−x)^(−2) e^((1−x)^(−1) )   f^′ (x)=e^(1/(1−x)) (1+(x/((x−1)^2 )))  f^′ (x)=e^((1−x)^(−1) ) (((x^2 −x+1)/(x^2 −2x+1)))  f^′ (x)=e^((1−x)^(−1) ) (((1−(1/x)+(1/x^2 ))/(1−(2/x)+(1/x^2 ))))  ∴ l=lim_(x→∞) f^′ (x)=lim_(x→∞) {e^(1/(1−x)) (((1−(1/x)+(1/x^2 ))/(1−(2/x)+(1/x^2 ))))}  l=e^(1/(−∞)) ((1−0+0)/(1−0+0))=1=g^′ (x) for x>1.  So, the graph of f(x) is approximately  parallel to that of g(x) for sufficiently  large values of x.  lnf(x)=lnx+(1/(1−x))  ∴lim_(x→1^+ ) lnf(x)=ln1−∞=−∞  ∴ lim_(x→1^+ ) f(x)=e^(−∞) =0  So, x=1 is the approximate root of f(x)=0.  Also, lim_(x→∞) lnf(x)=∞⇒f(x)→∞  while f′(x)→1. So, a straight line   approximates f(x) for large x.  Given that f^′ (x)→1 as x→∞  for x>1  and x=1 is a root of f(x)=0, an   asymptote to f(x) as x→∞ is found to  be y−0=(1)(x−1)⇒y=x−1 which  is the function g(x).

$${f}\left({x}\right)={xe}^{\frac{\mathrm{1}}{\mathrm{1}−{x}}} \:\:\:\:\left({x}\neq\mathrm{1}\right) \\ $$$${f}^{'} \left({x}\right)={e}^{\left(\mathrm{1}−{x}\right)^{−\mathrm{1}} } +{x}×\left(\mathrm{1}−{x}\right)^{−\mathrm{2}} {e}^{\left(\mathrm{1}−{x}\right)^{−\mathrm{1}} } \\ $$$${f}^{'} \left({x}\right)={e}^{\frac{\mathrm{1}}{\mathrm{1}−{x}}} \left(\mathrm{1}+\frac{{x}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\right) \\ $$$${f}^{'} \left({x}\right)={e}^{\left(\mathrm{1}−{x}\right)^{−\mathrm{1}} } \left(\frac{{x}^{\mathrm{2}} −{x}+\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}}\right) \\ $$$${f}^{'} \left({x}\right)={e}^{\left(\mathrm{1}−{x}\right)^{−\mathrm{1}} } \left(\frac{\mathrm{1}−\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}{\mathrm{1}−\frac{\mathrm{2}}{{x}}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}\right) \\ $$$$\therefore\:{l}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}^{'} \left({x}\right)=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left\{{e}^{\frac{\mathrm{1}}{\mathrm{1}−{x}}} \left(\frac{\mathrm{1}−\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}{\mathrm{1}−\frac{\mathrm{2}}{{x}}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}\right)\right\} \\ $$$${l}={e}^{\frac{\mathrm{1}}{−\infty}} \frac{\mathrm{1}−\mathrm{0}+\mathrm{0}}{\mathrm{1}−\mathrm{0}+\mathrm{0}}=\mathrm{1}={g}^{'} \left({x}\right)\:{for}\:{x}>\mathrm{1}. \\ $$$${So},\:{the}\:{graph}\:{of}\:{f}\left({x}\right)\:{is}\:{approximately} \\ $$$${parallel}\:{to}\:{that}\:{of}\:{g}\left({x}\right)\:{for}\:{sufficiently} \\ $$$${large}\:{values}\:{of}\:{x}. \\ $$$${lnf}\left({x}\right)={lnx}+\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$$\therefore\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}{lnf}\left({x}\right)={ln}\mathrm{1}−\infty=−\infty \\ $$$$\therefore\:\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}{f}\left({x}\right)={e}^{−\infty} =\mathrm{0} \\ $$$${So},\:{x}=\mathrm{1}\:{is}\:{the}\:{approximate}\:{root}\:{of}\:{f}\left({x}\right)=\mathrm{0}. \\ $$$${Also},\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}{lnf}\left({x}\right)=\infty\Rightarrow{f}\left({x}\right)\rightarrow\infty \\ $$$${while}\:{f}'\left({x}\right)\rightarrow\mathrm{1}.\:{So},\:{a}\:{straight}\:{line}\: \\ $$$${approximates}\:{f}\left({x}\right)\:{for}\:{large}\:{x}. \\ $$$${Given}\:{that}\:{f}^{'} \left({x}\right)\rightarrow\mathrm{1}\:{as}\:{x}\rightarrow\infty\:\:{for}\:{x}>\mathrm{1} \\ $$$${and}\:{x}=\mathrm{1}\:{is}\:{a}\:{root}\:{of}\:{f}\left({x}\right)=\mathrm{0},\:{an}\: \\ $$$${asymptote}\:{to}\:{f}\left({x}\right)\:{as}\:{x}\rightarrow\infty\:{is}\:{found}\:{to} \\ $$$${be}\:{y}−\mathrm{0}=\left(\mathrm{1}\right)\left({x}−\mathrm{1}\right)\Rightarrow{y}={x}−\mathrm{1}\:{which} \\ $$$${is}\:{the}\:{function}\:{g}\left({x}\right).\:\: \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com