Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42812 by maxmathsup by imad last updated on 02/Sep/18

study the convervence of  ∫_1 ^(+∞)   ((arctan(x−1))/((x^2 −1)^(4/3) )) dx

$${study}\:{the}\:{convervence}\:{of}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{arctan}\left({x}−\mathrm{1}\right)}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }\:{dx} \\ $$

Commented by maxmathsup by imad last updated on 08/Sep/18

changement x−1 =t give   I = ∫_0 ^(+∞)   ((arctan(t))/(t^(4/3) (t+2)^(4/3) )) dt   ⇒ I = ∫_0 ^1    ((arctan(t))/(t^(4/3) (t+2)^(4/3) )) dt +∫_1 ^(+∞)    ((arctan(t))/(t^(4/3) (t+2)^(4/3) ))dt  at V(0)   ((arctant)/(t^(4/3) (t+2)^(4/3) )) ∼ (t/(t^(4/3)  2^(4/3) )) =  (1/(t^(1/3)   2^(4/3) )) and the  integral ∫_0 ^1     (dt/(2^(4/3)  t^(1/3) )) converges  from another side  lim_(t→+∞)  t^2   ((arctan(t))/(t^(4/3) (t+2)^(4/3) ))  =lim_(t→+∞)       ((arctan(t))/t^((8/3)−2) ) =lim_(t→+∞)    ((arctan(t))/t^(2/3) ) =0 so the integral  ∫_1 ^(+∞)    ((arctan(t))/(t^(4/3) (t+2)^(4/3) ))dt converges the convergence of I is assured.

$${changement}\:{x}−\mathrm{1}\:={t}\:{give}\: \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{arctan}\left({t}\right)}{{t}^{\frac{\mathrm{4}}{\mathrm{3}}} \left({t}+\mathrm{2}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }\:{dt}\:\:\:\Rightarrow\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{arctan}\left({t}\right)}{{t}^{\frac{\mathrm{4}}{\mathrm{3}}} \left({t}+\mathrm{2}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }\:{dt}\:+\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{arctan}\left({t}\right)}{{t}^{\frac{\mathrm{4}}{\mathrm{3}}} \left({t}+\mathrm{2}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }{dt} \\ $$$${at}\:{V}\left(\mathrm{0}\right)\:\:\:\frac{{arctant}}{{t}^{\frac{\mathrm{4}}{\mathrm{3}}} \left({t}+\mathrm{2}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }\:\sim\:\frac{{t}}{{t}^{\frac{\mathrm{4}}{\mathrm{3}}} \:\mathrm{2}^{\frac{\mathrm{4}}{\mathrm{3}}} }\:=\:\:\frac{\mathrm{1}}{{t}^{\frac{\mathrm{1}}{\mathrm{3}}} \:\:\mathrm{2}^{\frac{\mathrm{4}}{\mathrm{3}}} }\:{and}\:{the}\:\:{integral}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dt}}{\mathrm{2}^{\frac{\mathrm{4}}{\mathrm{3}}} \:{t}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:{converges} \\ $$$${from}\:{another}\:{side}\:\:{lim}_{{t}\rightarrow+\infty} \:{t}^{\mathrm{2}} \:\:\frac{{arctan}\left({t}\right)}{{t}^{\frac{\mathrm{4}}{\mathrm{3}}} \left({t}+\mathrm{2}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} } \\ $$$$={lim}_{{t}\rightarrow+\infty} \:\:\:\:\:\:\frac{{arctan}\left({t}\right)}{{t}^{\frac{\mathrm{8}}{\mathrm{3}}−\mathrm{2}} }\:={lim}_{{t}\rightarrow+\infty} \:\:\:\frac{{arctan}\left({t}\right)}{{t}^{\frac{\mathrm{2}}{\mathrm{3}}} }\:=\mathrm{0}\:{so}\:{the}\:{integral} \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{arctan}\left({t}\right)}{{t}^{\frac{\mathrm{4}}{\mathrm{3}}} \left({t}+\mathrm{2}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }{dt}\:{converges}\:{the}\:{convergence}\:{of}\:{I}\:{is}\:{assured}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com