Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 42826 by MJS last updated on 03/Sep/18

solving  ax^4 +bx^3 +cx^2 +dx+e=0  (a≠0, b, c, d, e)∈Q              special cases (easy to solve)            ax^4 +e=0 solve at^2 +e=0 ⇒ x=±(√t_(1, 2) )            ax^4 +cx^2 +e=0 solve at^2 +ct+e=0 ⇒ x=±(√t_(1, 2) )    always try all factors of ±e  because a(x−α)(x−β)(x−γ)(x−δ)=ax^4 +...+αβγδ  ⇒ e=αβγδ    next we must find the nature of the solutions  4 real solutions  2 real & 2 complex solutions  4 complex solutions  a, b, c, d, e ∈Q ⇒ complex solutions always in  conjugated pairs  draw the function or calculate some values  to find the number of real solutions    divide by a  x^4 +px^3 +qx^2 +rx+s=0  [p=(b/a)  q=(c/a)  r=(d/a)  s=(e/a)]    I′ll soon post some cases I′ve been able to solve  as comments

$$\mathrm{solving} \\ $$$${ax}^{\mathrm{4}} +{bx}^{\mathrm{3}} +{cx}^{\mathrm{2}} +{dx}+{e}=\mathrm{0} \\ $$$$\left({a}\neq\mathrm{0},\:{b},\:{c},\:{d},\:{e}\right)\in\mathbb{Q} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{special}\:\mathrm{cases}\:\left(\mathrm{easy}\:\mathrm{to}\:\mathrm{solve}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:{ax}^{\mathrm{4}} +{e}=\mathrm{0}\:\mathrm{solve}\:{at}^{\mathrm{2}} +{e}=\mathrm{0}\:\Rightarrow\:{x}=\pm\sqrt{{t}_{\mathrm{1},\:\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:{ax}^{\mathrm{4}} +{cx}^{\mathrm{2}} +{e}=\mathrm{0}\:\mathrm{solve}\:{at}^{\mathrm{2}} +{ct}+{e}=\mathrm{0}\:\Rightarrow\:{x}=\pm\sqrt{{t}_{\mathrm{1},\:\mathrm{2}} } \\ $$$$ \\ $$$$\mathrm{always}\:\mathrm{try}\:\mathrm{all}\:\mathrm{factors}\:\mathrm{of}\:\pm{e} \\ $$$$\mathrm{because}\:{a}\left({x}−\alpha\right)\left({x}−\beta\right)\left({x}−\gamma\right)\left({x}−\delta\right)={ax}^{\mathrm{4}} +...+\alpha\beta\gamma\delta \\ $$$$\Rightarrow\:{e}=\alpha\beta\gamma\delta \\ $$$$ \\ $$$$\mathrm{next}\:\mathrm{we}\:\mathrm{must}\:\mathrm{find}\:\mathrm{the}\:\mathrm{nature}\:\mathrm{of}\:\mathrm{the}\:\mathrm{solutions} \\ $$$$\mathrm{4}\:\mathrm{real}\:\mathrm{solutions} \\ $$$$\mathrm{2}\:\mathrm{real}\:\&\:\mathrm{2}\:\mathrm{complex}\:\mathrm{solutions} \\ $$$$\mathrm{4}\:\mathrm{complex}\:\mathrm{solutions} \\ $$$${a},\:{b},\:{c},\:{d},\:{e}\:\in\mathbb{Q}\:\Rightarrow\:\mathrm{complex}\:\mathrm{solutions}\:\mathrm{always}\:\mathrm{in} \\ $$$$\mathrm{conjugated}\:\mathrm{pairs} \\ $$$$\mathrm{draw}\:\mathrm{the}\:\mathrm{function}\:\mathrm{or}\:\mathrm{calculate}\:\mathrm{some}\:\mathrm{values} \\ $$$$\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{real}\:\mathrm{solutions} \\ $$$$ \\ $$$$\mathrm{divide}\:\mathrm{by}\:{a} \\ $$$${x}^{\mathrm{4}} +{px}^{\mathrm{3}} +{qx}^{\mathrm{2}} +{rx}+{s}=\mathrm{0} \\ $$$$\left[{p}=\frac{{b}}{{a}}\:\:{q}=\frac{{c}}{{a}}\:\:{r}=\frac{{d}}{{a}}\:\:{s}=\frac{{e}}{{a}}\right] \\ $$$$ \\ $$$$\mathrm{I}'\mathrm{ll}\:\mathrm{soon}\:\mathrm{post}\:\mathrm{some}\:\mathrm{cases}\:\mathrm{I}'\mathrm{ve}\:\mathrm{been}\:\mathrm{able}\:\mathrm{to}\:\mathrm{solve} \\ $$$$\mathrm{as}\:\mathrm{comments} \\ $$

Commented by Tawa1 last updated on 03/Sep/18

Great sir. God bless you sir

$$\mathrm{Great}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by Necxx last updated on 03/Sep/18

Write a ten digit number containing 0-9. Situations are, * Each numbers should have used exactly once. * First n numbers should be divisible by n. e.g, 123, this is three digit number and divisible by 3. 1024, its a four digit number and divisible by 4....

Commented by MJS last updated on 03/Sep/18

4 real solutions x_1 , x_2 , x_3 , x_4  can be put as this:  x_1 =α−(√β)  x_2 =α+(√β)  x_3 =γ−(√δ)  x_4 =γ+(√δ)  expanding (x−x_1 )(x−x_2 )(x−x_3 )(x−x_4 ) we get  x^4 −       −2(α+γ)x^3 +       +(α^2 +4αγ−β+γ^2 −δ)x^2 −       −2(α^2 γ+αγ^2 −αδ−βγ)x+       +(α^2 −β)(γ^2 −δ)  this must be the same as  x^4 +px^3 +qx^2 +rx+s ⇒  ⇒  { (((1)  −2(α+γ)=p)),(((2)  (α^2 +4αγ−β+γ^2 −δ)=q)),(((3)  −2(α^2 γ+αγ^2 −αδ−βγ)=r)),(((4)  (α^2 −β)(γ^2 −δ)=s)) :}  solve (1) for α, (2) for β, (3) for δ, insert in (4)  which leads to  γ^6 +((3p)/2)γ^5 +((3p^2 +2q)/4)γ^4 +((p(p^2 +4q))/8)γ^3 +((2p^2 q+pr+q^2 −4s)/(16))γ^2 +((p(pr+q^2 −4s))/(32))γ−((p^2 s−pqr+r^2 )/(64))=0  γ=u−(p/4)  u^6 −((3p^2 −8q)/(16))u^4 +((3p^4 −16(p^2 q−pr−q^2 +4s))/(256))u^2 −(((p^3 −4pq+8r)^2 )/(4096))=0  u=(√v)  v^3 −((3p^2 −8q)/(16))v^2 +((3p^4 −16(p^2 q−pr−q^2 +4s))/(256))v−(((p^3 −4pq+8r)^2 )/(4096))=0  v=w+((3p^2 −8q)/(48))  w^3 +((3pr−q^2 −12s)/(48))w−((27p^2 s−9pqr+2q^3 −72qs+27r^3 )/(1728))=0  we need one real solution for w and then we  go back w→v→u→γ  α=−(p/4)−(1/(12))(√(3(48w+3p^2 −8q)))  β=−w+(p^2 /8)−(q/3)+((p^3 −4pq+8r)/(8(√(3(48w+3p^2 −8q)))))  γ=−(p/4)+(1/(12))(√(3(48w+3p^2 −8q)))  δ=−w+(p^2 /8)−(q/3)−((p^3 −4pq+8r)/(8(√(3(48w+3p^2 −8q)))))  if we found a “beautiful” w it′s fine, if not we  can use a calculator to get good approximations

$$\mathrm{4}\:\mathrm{real}\:\mathrm{solutions}\:{x}_{\mathrm{1}} ,\:{x}_{\mathrm{2}} ,\:{x}_{\mathrm{3}} ,\:{x}_{\mathrm{4}} \:\mathrm{can}\:\mathrm{be}\:\mathrm{put}\:\mathrm{as}\:\mathrm{this}: \\ $$$${x}_{\mathrm{1}} =\alpha−\sqrt{\beta} \\ $$$${x}_{\mathrm{2}} =\alpha+\sqrt{\beta} \\ $$$${x}_{\mathrm{3}} =\gamma−\sqrt{\delta} \\ $$$${x}_{\mathrm{4}} =\gamma+\sqrt{\delta} \\ $$$$\mathrm{expanding}\:\left({x}−{x}_{\mathrm{1}} \right)\left({x}−{x}_{\mathrm{2}} \right)\left({x}−{x}_{\mathrm{3}} \right)\left({x}−{x}_{\mathrm{4}} \right)\:\mathrm{we}\:\mathrm{get} \\ $$$${x}^{\mathrm{4}} − \\ $$$$\:\:\:\:\:−\mathrm{2}\left(\alpha+\gamma\right){x}^{\mathrm{3}} + \\ $$$$\:\:\:\:\:+\left(\alpha^{\mathrm{2}} +\mathrm{4}\alpha\gamma−\beta+\gamma^{\mathrm{2}} −\delta\right){x}^{\mathrm{2}} − \\ $$$$\:\:\:\:\:−\mathrm{2}\left(\alpha^{\mathrm{2}} \gamma+\alpha\gamma^{\mathrm{2}} −\alpha\delta−\beta\gamma\right){x}+ \\ $$$$\:\:\:\:\:+\left(\alpha^{\mathrm{2}} −\beta\right)\left(\gamma^{\mathrm{2}} −\delta\right) \\ $$$$\mathrm{this}\:\mathrm{must}\:\mathrm{be}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as} \\ $$$${x}^{\mathrm{4}} +{px}^{\mathrm{3}} +{qx}^{\mathrm{2}} +{rx}+{s}\:\Rightarrow \\ $$$$\Rightarrow\:\begin{cases}{\left(\mathrm{1}\right)\:\:−\mathrm{2}\left(\alpha+\gamma\right)={p}}\\{\left(\mathrm{2}\right)\:\:\left(\alpha^{\mathrm{2}} +\mathrm{4}\alpha\gamma−\beta+\gamma^{\mathrm{2}} −\delta\right)={q}}\\{\left(\mathrm{3}\right)\:\:−\mathrm{2}\left(\alpha^{\mathrm{2}} \gamma+\alpha\gamma^{\mathrm{2}} −\alpha\delta−\beta\gamma\right)={r}}\\{\left(\mathrm{4}\right)\:\:\left(\alpha^{\mathrm{2}} −\beta\right)\left(\gamma^{\mathrm{2}} −\delta\right)={s}}\end{cases} \\ $$$$\mathrm{solve}\:\left(\mathrm{1}\right)\:\mathrm{for}\:\alpha,\:\left(\mathrm{2}\right)\:\mathrm{for}\:\beta,\:\left(\mathrm{3}\right)\:\mathrm{for}\:\delta,\:\mathrm{insert}\:\mathrm{in}\:\left(\mathrm{4}\right) \\ $$$$\mathrm{which}\:\mathrm{leads}\:\mathrm{to} \\ $$$$\gamma^{\mathrm{6}} +\frac{\mathrm{3}{p}}{\mathrm{2}}\gamma^{\mathrm{5}} +\frac{\mathrm{3}{p}^{\mathrm{2}} +\mathrm{2}{q}}{\mathrm{4}}\gamma^{\mathrm{4}} +\frac{{p}\left({p}^{\mathrm{2}} +\mathrm{4}{q}\right)}{\mathrm{8}}\gamma^{\mathrm{3}} +\frac{\mathrm{2}{p}^{\mathrm{2}} {q}+{pr}+{q}^{\mathrm{2}} −\mathrm{4}{s}}{\mathrm{16}}\gamma^{\mathrm{2}} +\frac{{p}\left({pr}+{q}^{\mathrm{2}} −\mathrm{4}{s}\right)}{\mathrm{32}}\gamma−\frac{{p}^{\mathrm{2}} {s}−{pqr}+{r}^{\mathrm{2}} }{\mathrm{64}}=\mathrm{0} \\ $$$$\gamma={u}−\frac{{p}}{\mathrm{4}} \\ $$$${u}^{\mathrm{6}} −\frac{\mathrm{3}{p}^{\mathrm{2}} −\mathrm{8}{q}}{\mathrm{16}}{u}^{\mathrm{4}} +\frac{\mathrm{3}{p}^{\mathrm{4}} −\mathrm{16}\left({p}^{\mathrm{2}} {q}−{pr}−{q}^{\mathrm{2}} +\mathrm{4}{s}\right)}{\mathrm{256}}{u}^{\mathrm{2}} −\frac{\left({p}^{\mathrm{3}} −\mathrm{4}{pq}+\mathrm{8}{r}\right)^{\mathrm{2}} }{\mathrm{4096}}=\mathrm{0} \\ $$$${u}=\sqrt{{v}} \\ $$$${v}^{\mathrm{3}} −\frac{\mathrm{3}{p}^{\mathrm{2}} −\mathrm{8}{q}}{\mathrm{16}}{v}^{\mathrm{2}} +\frac{\mathrm{3}{p}^{\mathrm{4}} −\mathrm{16}\left({p}^{\mathrm{2}} {q}−{pr}−{q}^{\mathrm{2}} +\mathrm{4}{s}\right)}{\mathrm{256}}{v}−\frac{\left({p}^{\mathrm{3}} −\mathrm{4}{pq}+\mathrm{8}{r}\right)^{\mathrm{2}} }{\mathrm{4096}}=\mathrm{0} \\ $$$${v}={w}+\frac{\mathrm{3}{p}^{\mathrm{2}} −\mathrm{8}{q}}{\mathrm{48}} \\ $$$${w}^{\mathrm{3}} +\frac{\mathrm{3}{pr}−{q}^{\mathrm{2}} −\mathrm{12}{s}}{\mathrm{48}}{w}−\frac{\mathrm{27}{p}^{\mathrm{2}} {s}−\mathrm{9}{pqr}+\mathrm{2}{q}^{\mathrm{3}} −\mathrm{72}{qs}+\mathrm{27}{r}^{\mathrm{3}} }{\mathrm{1728}}=\mathrm{0} \\ $$$$\mathrm{we}\:\mathrm{need}\:\mathrm{one}\:\mathrm{real}\:\mathrm{solution}\:\mathrm{for}\:{w}\:\mathrm{and}\:\mathrm{then}\:\mathrm{we} \\ $$$$\mathrm{go}\:\mathrm{back}\:{w}\rightarrow{v}\rightarrow{u}\rightarrow\gamma \\ $$$$\alpha=−\frac{{p}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{12}}\sqrt{\mathrm{3}\left(\mathrm{48}{w}+\mathrm{3}{p}^{\mathrm{2}} −\mathrm{8}{q}\right)} \\ $$$$\beta=−{w}+\frac{{p}^{\mathrm{2}} }{\mathrm{8}}−\frac{{q}}{\mathrm{3}}+\frac{{p}^{\mathrm{3}} −\mathrm{4}{pq}+\mathrm{8}{r}}{\mathrm{8}\sqrt{\mathrm{3}\left(\mathrm{48}{w}+\mathrm{3}{p}^{\mathrm{2}} −\mathrm{8}{q}\right)}} \\ $$$$\gamma=−\frac{{p}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{12}}\sqrt{\mathrm{3}\left(\mathrm{48}{w}+\mathrm{3}{p}^{\mathrm{2}} −\mathrm{8}{q}\right)} \\ $$$$\delta=−{w}+\frac{{p}^{\mathrm{2}} }{\mathrm{8}}−\frac{{q}}{\mathrm{3}}−\frac{{p}^{\mathrm{3}} −\mathrm{4}{pq}+\mathrm{8}{r}}{\mathrm{8}\sqrt{\mathrm{3}\left(\mathrm{48}{w}+\mathrm{3}{p}^{\mathrm{2}} −\mathrm{8}{q}\right)}} \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{found}\:\mathrm{a}\:``\mathrm{beautiful}''\:{w}\:\mathrm{it}'\mathrm{s}\:\mathrm{fine},\:\mathrm{if}\:\mathrm{not}\:\mathrm{we} \\ $$$$\mathrm{can}\:\mathrm{use}\:\mathrm{a}\:\mathrm{calculator}\:\mathrm{to}\:\mathrm{get}\:\mathrm{good}\:\mathrm{approximations} \\ $$

Commented by Tawa1 last updated on 03/Sep/18

Wow. God less you sir

$$\mathrm{Wow}.\:\mathrm{God}\:\mathrm{less}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by malwaan last updated on 04/Sep/18

Greet

$$\mathrm{Greet} \\ $$

Commented by MJS last updated on 05/Sep/18

in case of 2 real and 2 complex solutions put  x_1 =α−(√β)  x_2 =α+(√β)  x_3 =γ−i(√δ)  x_4 =γ+i(√δ)  in case of 4 complex solutions put  x_1 =α−(√β)  x_2 =α+(√β)  x_3 =γ−i(√δ)  x_4 =γ+i(√δ)  and follow the same procedure as above

$$\mathrm{in}\:\mathrm{case}\:\mathrm{of}\:\mathrm{2}\:\mathrm{real}\:\mathrm{and}\:\mathrm{2}\:\mathrm{complex}\:\mathrm{solutions}\:\mathrm{put} \\ $$$${x}_{\mathrm{1}} =\alpha−\sqrt{\beta} \\ $$$${x}_{\mathrm{2}} =\alpha+\sqrt{\beta} \\ $$$${x}_{\mathrm{3}} =\gamma−\mathrm{i}\sqrt{\delta} \\ $$$${x}_{\mathrm{4}} =\gamma+\mathrm{i}\sqrt{\delta} \\ $$$$\mathrm{in}\:\mathrm{case}\:\mathrm{of}\:\mathrm{4}\:\mathrm{complex}\:\mathrm{solutions}\:\mathrm{put} \\ $$$${x}_{\mathrm{1}} =\alpha−\sqrt{\beta} \\ $$$${x}_{\mathrm{2}} =\alpha+\sqrt{\beta} \\ $$$${x}_{\mathrm{3}} =\gamma−\mathrm{i}\sqrt{\delta} \\ $$$${x}_{\mathrm{4}} =\gamma+\mathrm{i}\sqrt{\delta} \\ $$$$\mathrm{and}\:\mathrm{follow}\:\mathrm{the}\:\mathrm{same}\:\mathrm{procedure}\:\mathrm{as}\:\mathrm{above} \\ $$

Commented by Tawa1 last updated on 05/Sep/18

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com