Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 4297 by 123456 last updated on 07/Jan/16

lets  f:[0,+∞)→R,∀x≥y⇒f(x)≥f(y)  g:[0,+∞)→R  if  ∀x∈[0,+∞),f(x)≤g(x)≤f(2x)  lim_(x→+∞) f(x)=L,L is finite  does  lim_(x→+∞) f(x)−g(x)=0?

$$\mathrm{lets} \\ $$$${f}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R},\forall{x}\geqslant{y}\Rightarrow{f}\left({x}\right)\geqslant{f}\left({y}\right) \\ $$$${g}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R} \\ $$$$\mathrm{if} \\ $$$$\forall{x}\in\left[\mathrm{0},+\infty\right),{f}\left({x}\right)\leqslant{g}\left({x}\right)\leqslant{f}\left(\mathrm{2}{x}\right) \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}{f}\left({x}\right)=\mathrm{L},\mathrm{L}\:\mathrm{is}\:\mathrm{finite} \\ $$$$\mathrm{does} \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}{f}\left({x}\right)−{g}\left({x}\right)=\mathrm{0}? \\ $$

Commented by Yozzii last updated on 08/Jan/16

lim_(x→∞) f(2x)=lim_(0.5u→∞) f(u)=lim_(u→∞) f(u)=L  Since f(x)≤g(x)≤f(2x) ∀x∈[0,∞)  ⇒lim_(x→∞) f(x)≤lim_(x→∞) g(x)≤lim_(x→∞) f(2x).  lim_(x→∞) f(x)=lim_(x→∞) f(2x)=L ⇒lim_(x→∞) g(x)=L  by the squeeze theorem.  lim_(x→∞) {f(x)−g(x)}=lim_(x→∞) f(x)−lim_(x→∞) g(x)                                    =L−L                                    =0.  (Under construction)

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left(\mathrm{2}{x}\right)=\underset{\mathrm{0}.\mathrm{5}{u}\rightarrow\infty} {\mathrm{lim}}{f}\left({u}\right)=\underset{{u}\rightarrow\infty} {\mathrm{lim}}{f}\left({u}\right)={L} \\ $$$${Since}\:{f}\left({x}\right)\leqslant{g}\left({x}\right)\leqslant{f}\left(\mathrm{2}{x}\right)\:\forall{x}\in\left[\mathrm{0},\infty\right) \\ $$$$\Rightarrow\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right)\leqslant\underset{{x}\rightarrow\infty} {\mathrm{lim}}{g}\left({x}\right)\leqslant\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left(\mathrm{2}{x}\right). \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right)=\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left(\mathrm{2}{x}\right)={L}\:\Rightarrow\underset{{x}\rightarrow\infty} {\mathrm{lim}}{g}\left({x}\right)={L} \\ $$$${by}\:{the}\:{squeeze}\:{theorem}. \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left\{{f}\left({x}\right)−{g}\left({x}\right)\right\}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right)−\underset{{x}\rightarrow\infty} {\mathrm{lim}}{g}\left({x}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={L}−{L} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{0}. \\ $$$$\left({Under}\:{construction}\right) \\ $$$$ \\ $$

Commented by prakash jain last updated on 08/Jan/16

f(x)=x  g(x)=1.5x  x≥0, f(x)≤g(x)≤f(2x)  f(x)−g(x)=−.5x  lim_(x→+∞) f(x)−g(x)≠0

$${f}\left({x}\right)={x} \\ $$$${g}\left({x}\right)=\mathrm{1}.\mathrm{5}{x} \\ $$$${x}\geqslant\mathrm{0},\:{f}\left({x}\right)\leqslant{g}\left({x}\right)\leqslant{f}\left(\mathrm{2}{x}\right) \\ $$$${f}\left({x}\right)−{g}\left({x}\right)=−.\mathrm{5}{x} \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}{f}\left({x}\right)−{g}\left({x}\right)\neq\mathrm{0} \\ $$

Commented by Yozzii last updated on 08/Jan/16

lim_(x→∞) f(x)=lim_(x→∞)  x=∞ (not finite)  I′m searching for a counterexample  as well.

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right)=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}=\infty\:\left({not}\:{finite}\right) \\ $$$${I}'{m}\:{searching}\:{for}\:{a}\:{counterexample} \\ $$$${as}\:{well}. \\ $$

Commented by prakash jain last updated on 08/Jan/16

oh. I did not pay attention.

$$\mathrm{oh}.\:\mathrm{I}\:\mathrm{did}\:\mathrm{not}\:\mathrm{pay}\:\mathrm{attention}. \\ $$

Commented by prakash jain last updated on 08/Jan/16

You are correct.   lim_(x→∞) f(x)−g(x)=0

$$\mathrm{You}\:\mathrm{are}\:\mathrm{correct}.\: \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right)−{g}\left({x}\right)=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com